DOI QR코드

DOI QR Code

The Multi-step Adomian Decomposition Method for Approximating a Fractional Smoking Habit Model

  • Zuriqat, Mohammad (Department of Mathematics, Al al-Bayt University) ;
  • Freihat, Asad (Department of Applied Science, Ajloun College, Al-Balqa Applied University)
  • Received : 2015.06.10
  • Accepted : 2019.06.21
  • Published : 2020.12.31

Abstract

Smoking is one of the main causes of health problems and continues to be one of the world's most significant health challenges. In this paper, we use the multi-step Adomian decomposition method (MSADM) to obtain approximate analytical solutions for a mathematical fractional model of the evolution of the smoking habit. The proposed MSADM scheme is only a simple modification of the Adomian decomposition method (ADM), in which ADM is treated algorithmically with a sequence of small intervals (i.e. time step) for finding accurate approximate solutions to the corresponding problems. A comparative study between the new algorithm and the classical Runge-Kutta method is presented in the case of integer-order derivatives. The solutions obtained are also presented graphically. The results reveal that the method is effective and convenient for solving linear and nonlinear differential equations of fractional order.

Keywords

References

  1. K. Abboui and Y. Cherruault, New ideas for proving convergence of decomposition methods, Comput. Math. Appl., 29(7)(1995), 103-108.
  2. F. M. Allan, Construction of analytic solution to chaotic dynamical systems using the homotopy analysis method, Chaos, Solitons & Fractals, 39(4)(2009), 1744-1752. https://doi.org/10.1016/j.chaos.2007.06.116
  3. G. Barro, O. So, J. M. Ntaganda, B. Mampassi and B. Some, A numerical method for some nonlinear differential equation models in biology, Appl. Math. Comput., 200(1)(2008), 28-33. https://doi.org/10.1016/j.amc.2007.10.041
  4. C. Castillo-Garsow, G. Jordan-Salivia and A. Rodriguez Herrera, Mathematical models for the dynamics of tobacco use, recovery and relapse, Technical Report Series BU-1505-M, Cornell University, Ithaca, NY, USA, 1997.
  5. V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301(2)(2005), 508-518. https://doi.org/10.1016/j.jmaa.2004.07.039
  6. V. S. Erturk, S. Momani and Z. Odibat, Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 13(2008), 1642-1654. https://doi.org/10.1016/j.cnsns.2007.02.006
  7. A. Freihat and M. AL-Smadi, A new reliable algorithm using the generalized differential transform method for the numeric-analytic solution of fractional-order Liu chaotic and hyperchaotic systems, Pensee J., 75(9)(2013), 263-276.
  8. A. Freihat and S. Momani, Adaptation of differential transform method for the numeric-analytic solution of fraction-order Rössler chaotic and hyperchaotic systems, Abstr. Appl. Anal., (2012), Art. ID 934219, 13 pp.
  9. R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Fractals and fractional calculus in continuum mechanics (Udine, 1996), 223-276, CISM Courses and Lect., 378, Springer, Vienna, 1997.
  10. F. Guerrero, F. Santonja and R. Villanueva, Analysing the Spanish smoke-free legislation of year 2006: A new method to quantify its impact using a dynamic model, Int. J. Drug Policy, 22(2011), 247-251. https://doi.org/10.1016/j.drugpo.2011.05.003
  11. F. Guerrero, F. Santonja and R. Villanueva, Solving a model for the evolution of smoking habit in spain with homotopy analysis method, Nonlinear Anal. Real World Appl., 14(2013), 549-558. https://doi.org/10.1016/j.nonrwa.2012.07.015
  12. I. Hashim, M. S. H. Chowdhury and S. Mawa, On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model, Chaos, Solitons & Fractals, 36(4)(2008), 823-827. https://doi.org/10.1016/j.chaos.2007.09.009
  13. H. Jafari and V. Daftardar-Gejji, Solving a system of nonlinear fractional differential equations using Adomian decomposition, J. Comput. Appl. Math., 196(2006), 644-651 https://doi.org/10.1016/j.cam.2005.10.017
  14. S. Kempfle and H. Beyer, Global and causal solutions of fractional differential equations, Proceedings of the 2nd International Workshop on Transform Methods and Special Functions, 210-216, Science Culture Technology Publishing, Varna, Bulgaria, 1996.
  15. A. Lahrouz, L. Omari, D. Kiouach and A. Belmaati, Deterministic and stochastic stability of a mathematical model of smoking, Statist. Probab. Lett., 81(2011), 1276-1284. https://doi.org/10.1016/j.spl.2011.03.029
  16. J. H. Lubin and N. E. Caporaso, Cigarette smoking, and lung cancer: modeling total exposure and intensity, Cancer Epidemiol Biomarkers Prev, 15(3)(2006), 517-523. https://doi.org/10.1158/1055-9965.EPI-05-0863
  17. F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics (Udine, 1996), 291-348, CISM Courses and Lect., 378, Springer, Vienna, 1997.
  18. K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, New York, 1993.
  19. S. Momani and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A , 365(5-6)(2007), 345-350. https://doi.org/10.1016/j.physleta.2007.01.046
  20. I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
  21. N. T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 131(2002), 517-529. https://doi.org/10.1016/S0096-3003(01)00167-9
  22. X. Y. Shi, H. Gao, V. I. Lazouskaya, Q. Kang, Y. Jin and L. P. Wang, Viscous flow and colloid transport near air-water interface in a microchannel, Comput. Math. Appl., 59(7)(2010), 2290-2304. https://doi.org/10.1016/j.camwa.2009.08.059
  23. H. Vazquez-Leal and F. Guerrero, Application of series method with Pade and Laplace-Pade resummation methods to solve a model for the evolution of smoking habit in Spain, Comput. Appl. Math., 33(1)(2014), 181-192. https://doi.org/10.1007/s40314-013-0054-2
  24. A.-M. Wazwaz, New solutions of distinct physical structures to high-dimensional nonlinear evolution equations, Appl. Math. Comput., 196(1)(2008), 363-370. https://doi.org/10.1016/j.amc.2007.06.002
  25. Y. Yongguang and H. Xiong, Application of the multistage homotopy-perturbation method to solve a class of hyperchaotic systems, Chaos, Solitons & Fractals, 42(4)(2009), 2330-2337. https://doi.org/10.1016/j.chaos.2009.03.154
  26. G. Zaman, Optimal campaign in the smoking dynamics, Comput. Math. Methods Med., (2011), Article ID 163834, 9 pp. https://doi.org/10.1080/17486700801982713
  27. M. Zurigat, S. Momani and A. Alawneh, Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method, Comput. Math. Appl., 59(3)(2010), 1227-1235. https://doi.org/10.1016/j.camwa.2009.07.002
  28. M. Zurigat, S. Momani, Z. odibat and A. Alawneh, The homotopy analysis method for handling systems of fractional differential equations, Appl. Math. Model., 34(1)(2010), 24-35. https://doi.org/10.1016/j.apm.2009.03.024