DOI QR코드

DOI QR Code

Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan

  • Aldrees, Ali (Department of Civil Engineering, College of Engineering, Prince Sattam bin Abdulaziz University) ;
  • Bakheit, Abubakr Taha (Department of Civil Engineering, College of Engineering, Prince Sattam bin Abdulaziz University) ;
  • Assilzadeh, Hamid (Institute of Research and Development, Duy Tan University)
  • Received : 2020.05.09
  • Accepted : 2020.11.21
  • Published : 2020.12.25

Abstract

Prediction of total sediment load is essential in an extensive range of problems such as the design of the dead volume of dams, design of stable channels, sediment transport in the rivers, calculation of bridge piers degradation, prediction of sand and gravel mining effects on river-bed equilibrium, determination of the environmental impacts and dredging necessities. This paper is aimed to investigate and predict the total sediment load of the Wadi Arbaat in Eastern Sudan. The study was estimated the sediment load by separate total sediment load into bedload and Suspended Load (SL), independently. Although the sediment records are not sufficient to construct the discharge-sediment yield relationship and Sediment Rating Curve (SRC), the total sediment loads were predicted based on the discharge and Suspended Sediment Concentration (SSC). The turbidity data NTU in water quality has been used for prediction of the SSC in the estimation of suspended Sediment Yield (SY) transport of Wadi Arbaat. The sediment curves can be used for the estimation of the suspended SYs from the watershed area. The amount of information available for Khor Arbaat case study on sediment is poor data. However, the total sediment load is essential for the optimal control of the sediment transport on Khor Arbaat sediment and the protection of the dams on the upper gate area. The results show that the proposed model is found to be considered adequate to predict the total sediment load.

Keywords

Acknowledgement

This work was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 2019/01/1087.

References

  1. Afrazi, M., Mahmoud, Y., Alitalesh, M. and Fakhimi, A.A. (2018), "Numerical analysis of effective parameters in direct shear test by hybrid discrete - finite element method", Modares Civ. Eng. J., 18(3), 13-24.
  2. Afrazi, M. and Rouhanifar, S. (2019), "Experimental study on mechanical behavior of sand-rubber mixtures", Modares Civ. Eng. J, 19(4), 83-96.
  3. Alabduljabbar, H., Haido, J.H., Alyousef, R., Yousif, S.T., McConnell, J., Wakil, K. and Jermsittiparsert, K. (2020), "Prediction of the flexural behavior of corroded concrete beams using combined method", Structures, 25, 1000-1008. https://doi.org/10.1016/j.istruc.2020.03.057.
  4. Alaskar, A., Wakil, K., Alyousef, R., Jermsittiparsert, K., Ho, L.S., Alabduljabbar, H., Alrshoudi, F. and Mohamed, A.M. (2020), "Computational analysis of three dimensional steel frame structures through different stiffening members", Steel Compos. Struct., Int. J., 35(2), 187-197. http://doi.org/10.12989/scs.2020.35.2.187.
  5. Alyousef, R., Alabduljabbar, H., Mohamed, A.M., Alaskar, A., Jermsittiparsert, K. and Ho, L.S. (2020), "A model to develop the porosity of concrete as important mechanical property", Smart Struct. Syst., Int. J., 26(2), 147-156. https://doi.org/10.12989/sss.2020.26.2.147.
  6. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel and Composite Structures, Seoul, Korea, December.
  7. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through beam connections composed of CFSST Columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333. http://dx.doi.org/10.4028/www.scientific.net/AMR.168-170.2329.
  8. Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., Int. J., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
  9. ASCE (1992), "Design and construction of urban stormwater management systems", ASCE and Water Environment Federation, USA.
  10. Bright, C., Mager, S. and Horton, S. (2020), "Response of nephelometric turbidity to hydrodynamic particle size of fine suspended sediment", Int. J. Sed. Res., 35(5), 444-454. https://doi.org/10.1016/j.ijsrc.2020.03.006.
  11. Cao, Y., Fan, Q., Azar, S.M., Alyousef, R., Yousif, S.T., Wakil, K., Jermsittiparsert, K., Ho, L.S., Alabduljabbar, H. and Alaskar, A. (2020a), "Computational parameter identification of strongest influence on the shear resistance of reinforced concrete beams by fiber reinforcement polymer", Structures, 27, 118-127. https://doi.org/10.1016/j.istruc.2020.05.031.
  12. Cao, Y., Wakil, K., Alyousef, R., Jermsittiparsert, K., Ho, L.S., Alabduljabbar, H., Alaskar, A., Alrshoudi, F. and Mohamed, A.M. (2020b), "Application of extreme learning machine in behavior of beam to column connections", Structures, 25, 861-867. https://doi.org/10.1016/j.istruc.2020.03.058.
  13. Cao, Y., Wakil, K., Alyousef, R., Yousif, S.T., Jermsittiparsert, K., Ho, L.S., Alabduljabbar, H., Alaskar, A., Alrshoudi, F. and Mohamed, A.M. (2020c), "Computational earthquake performance of plan-irregular shear wall structures subjected to different earthquake shock situations", Earthq. Struct., Int. J., 18(5), 567-580. https://doi.org/10.12989/eas.2020.18.5.567.
  14. Cohen, H. and Laronne, J.B. (2005), "High rates of sediment transport by flashfloods in the Southern Judean Desert, Israel", Hydrol. Processes, 19(8), 1687-1702. https://doi.org/10.1002/hyp.5630.
  15. Consult, S. (2002), "Ministry of housing and public utilities, Red Sea state water corporation, Khor Arbaat U/S upper gate dam, study and design final report", USA Ministry of Housing, USA.
  16. Daie, M., Jalali, A., Suhatril, M., Shariati, M., Arabnejad Khanouki, M.M., Shariati, A. and Kazemi-Arbat, P. (2011), "A new finite element investigation on pre-bent steel strips as damper for vibration control", Int. J. Phys. Sci. 6(36), 8044-8050. https://doi.org/10.5897/ijps11.1585.
  17. Dendy, F., Alan, P., Piest, R., Brakensiek, D., Osborne, H. and Rawls, W. (1979), "Sedimentation: Field manual for research in agricultural hydrology", USDA, Agr. Handbook, 224, 239-394.
  18. Dogan, E., Yuksel, I. and Kisi, O. (2007), "Estimation of total sediment load concentration obtained by experimental study using artificial neural networks", Environ. Fluid Mech., 7(4), 271-288. https://doi.org/10.1007/s10652-007-9025-8.
  19. Duan, J.G. (2013), "A simple total sediment load formula", Proceedings of the World Environmental and Water Resources Congress 2013: Showcasing the Future, Ohio, USA, May. https://doi.org/10.1061/9780784412947.190.
  20. Edwards, T.K., Glysson, G.D., Guy, H.P. and Norman, V.W. (1999), "Field methods for measurement of fluvial sediment", US Geological Survey Denver, Colorado, USA.
  21. Estrany, J., Garcia, C. and Batalla, R.J. (2009), "Suspended sediment transport in a small Mediterranean agricultural catchment", Earth Surf. Process. Landforms, 34(7), 929-940. https://doi.org/10.1002/esp.1777.
  22. Fanaie, N., Aghajani, S. and Shamloo, S. (2012), "Theoretical assessment of wire rope bracing system with soft central cylinder", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
  23. Fanaie, N. and Dizaj, E.A. (2014), "Response modification factor of the frames braced with reduced yielding segment BRB", Struct. Eng. Mech., Int. J., 50(1), 1-17. https://doi.org/10.12989/sem.2014.50.1.001.
  24. Fanaie, N., Esfahani, F.G. and Soroushnia, S. (2015a), "Analytical study of composite beams with different arrangements of channel shear connectors", Steel Compos. Struct., Int. J., 19(2), 485-501. https://doi.org/10.12989/scs.2015.19.2.485.
  25. Fanaie, N. and Shamlou, S.O. (2015b), "Response modification factor of mixed structures", Steel Compos. Struct., Int. J., 19(6), 1449-1466. https://doi.org/10.12989/scs.2015.19.6.1449.
  26. Fanaie, N., Aghajani, S. and Afsar Dizaj, E. (2016a), "Strengthening of moment-resisting frame using cable-cylinder bracing", Adv. Struct. Eng., 19(11), 1736-1754. https://doi.org/10.1177/1369433216649382.
  27. Fanaie, N., Aghajani, S. and Dizaj, E.A. (2016b), "Theoretical assessment of the behavior of cable bracing system with central steel cylinder", Adv. Struct. Eng., 19(3), 463-472. https://doi.org/10.1177/1369433216630052.
  28. Frey, P. (2014), "Particle velocity and concentration profiles in bedload experiments on a steep slope", Earth Surf. Process. Landf., 39(5), 646-655. https://doi.org/10.1002/esp.3517.
  29. Gippel, C.J. (1995), "Potential of turbidity monitoring for measuring the transport of suspended solids in streams", Hydrol. Process., 9(1), 83-97. https://doi.org/10.1002/hyp.3360090108.
  30. Haghnazar, H., Sangsefidi, Y., Mehraein, M. and Tavakol-Davani, H. (2020), "Evaluation of infilling and replenishment of river sand mining pits", Environ. Earth Sci., 79(14), 1-18. https://doi.org/10.1007/s12665-020-09106-z.
  31. Jalali, A., Daie, M., Nazhadan, S.V.M., Kazemi-Arbat, P. and Shariati, M. (2012), "Seismic performance of structures with pre-bent strips as a damper", Int. J. Phys. Sci., 7(26), 4061-4072. https://doi.org/10.5897/IJPS11.1324.
  32. Kandler, M. and Seidler, C. (2009), "Hydrochemical load in a small river following heavy rain events", Folia Geograph., 40, 27-32.
  33. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. Comput., 36, 1539-1558. https://doi.org/10.1007/s00366-019-00780-7.
  34. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017a), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., Int. J., 13(6), 531-538. http://dx.doi.org/10.12989/eas.2017.13.6.531.
  35. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017b), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., 63(2), 259-268. https://doi.org/10.12989/sem.2017.63.2.259.
  36. Lane, P.N.J. and Sheridan, G.J. (2002), "Impact of an unsealed forest road stream crossing: water quality and sediment sources", Hydrol. Process., 16(13), 2599-2612. https://doi.org/10.1002/hyp.1050.
  37. Lewis, J. (1996), "Turbidity‐controlled suspended sediment sampling for runoff‐event load estimation", Water Resour. Res., 32(7), 2299-2310. https://doi.org/10.1029/96WR00991.
  38. Liu, C., Wu, X., Wakil, K., Jermsittiparsert, K., Ho, L.S., Alabduljabbar, H., Alaskar, A., Alrshoudi, F., Alyousef, R. and Mohamed, A.M. (2020), "Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns", Steel Compos. Struct., 34(5), 743-767. https://doi.org/10.12989/scs.2020.34.5.743.
  39. Majedi, M., Afrazi, M. and Fakhimi, A. (2020a), "FEM-BPM simulation of SHPB testing for measurement of rock tensile strength", Proceedings of the 54th US Rock Mechanics/Geomechanics Symposium, Colorado, USA, July.
  40. Majedi, M.R., Afrazi, M. and Fakhimi, A. (2020b), "A micromechanical model for simulation of rock failure under high strain rate loading", Int. J. Civ. Eng., 2020, 1-15. https://doi.org/10.1007/s40999-020-00551-2.
  41. Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M.M., Baharom, S.B. and Azimi, M. (2016), "Strength prediction of rotary brace damper using MLR and MARS", Struct. Eng. Mech., Int. J., 60(3), 471-488. https://doi.org/10.12989/sem.2016.60.3.471.
  42. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manuf., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6.
  43. McCully, P. (1996), Silenced Rivers: The Ecology and Politics of Large Dams, Zed Books, London, UK.
  44. Milovancevic, M., Marinovic, J.S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A, 531, 121169. https://doi.org/10.1016/j.physa.2019.121169.
  45. Moghaddam, H., Fanaie, N. and Hamzehloo, H. (2009), "Uniform hazard response spectra and ground motions for Tabriz", J. Sci. Iran., 16(3), 238-248.
  46. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., Int. J., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853.
  47. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785.
  48. Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., Int. J., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497.
  49. Morris, G.L. and Fan, J. (1997), Reservoir Sedimentation Handbook, McGraw-Hill, New York, USA.
  50. Morris, G.L. and Fan, J. (1998), Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs and Watersheds for Sustainable Use, McGraw Hill Professional, New York, USA.
  51. Okcu, D., Pektas, A.O. and Uyumaz, A. (2016), "Creating a non-linear total sediment load formula using polynomial best subset regression model", J. Hydrol., 539, 662-673. https://doi.org/10.1016/j.jhydrol.2016.04.069.
  52. Pfannkuche, J. and Schmidt, A. (2003), "Determination of suspended particulate matter concentration from turbidity measurements: particle size effects and calibration procedures", Hydrol. Process., 17(10), 1951-1963. https://doi.org/10.1002/hyp.1220.
  53. Polyakov, V., Nearing, M., Hawdon, A., Wilkinson, S. and Nichols, M. (2013), "Comparison of two stream gauging systems for measuring runoff and sediment yield for a semi‐arid watershed", Earth Surf. Process. Landf., 38(4), 383-390. https://doi.org/10.1002/esp.3287
  54. Qi, C.C. (2020), "Big data management in the mining industry", Int. J. Miner. Metall. Mater., 27(2), 131-139. https://doi.org/10.1007/s12613-019-1937-z.
  55. Rouhanifar, S., Afrazi, M., Fakhimi, A. and Yazdani, M. (2020), "Strength and deformation behaviour of sand-rubber mixture", Int. J. Geotech. Eng., 2020, 1-15. https://doi.org/10.1080/19386362.2020.1812193.
  56. Sadeghipour Chahnasir, E., Zandi, Y., Shariati, M., Dehghani, E., Toghroli, A., Mohamed, E.T., Shariati, A., Safa, M., Wakil, K. and Khorami, M. (2018), "Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors", Smart Struct. Syst., Int. J., 22(4), 413-424. http://dx.doi.org/10.12989/sss.2018.22.4.413.
  57. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  58. Safa, M., Maleka, A., Arjomand, M.A., Khorami, M. and Shariati, M. (2019), "Strain rate effects on soil-geosynthetic interaction in fine-grained soil", Geomech. Eng., Int. J., 19(6), 533-542. https://doi.org/10.12989/gae.2019.19.6.533.
  59. Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K. and Khorami, M. (2020), "Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes", Physica A, 550, 124046. https://doi.org/10.1016/j.physa.2019.124046.
  60. Sari, P.A., Suhatril, M., Osman, N., Mu'azu, M., Dehghani, H., Sedghi, Y., Safa, M., Hasanipanah, M., Wakil, K. and Khorami, M. (2018), "An intelligent based-model role to simulate the factor of safe slope by support vector regression", Eng. Comput., 2018, 1-11. https://doi.org/10.1007/s00366-018-0677-4.
  61. Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., Int. J., 22(3), 335-340. https://doi.org/10.12989/sss.2018.22.3.335.
  62. Shariati, M. (2020), "Evaluation of seismic performance factors for tension-only braced frames", Steel Compos. Struct., Int. J., 35(4), 599-609. https://doi.org/10.12989/scs.2020.35.4.599.
  63. Shariati, M., Ramli Sulong, N.H. and Arabnejad Khanouki, M.M. (2012a), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Des., 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008.
  64. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2012b), "Behaviour of C-shaped angle shear connectors under monotonic and fully reversed cyclic loading: An experimental study", Mater. Des., 41, 67-73. https://doi.org/10.1016/j.matdes.2012.04.039.
  65. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2013), "Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading", Constr. Build. Mater., 38, 582-593. https://doi.org/10.1016/j.conbuildmat.2012.07.050.
  66. Shariati, M., Toghroli, A., Jalali, A. and Ibrahim, Z. (2017), "Assessment of stiffened angle shear connector under monotonic and fully reversed cyclic loading", Proceedings of the Fifth International Conference on Advances in Civil, Structural and Mechanical Engineering-CSM 2017, Bangkok, Thailand, September.
  67. Shariati, M., Tahir, M.M., Wee, T.C., Shah, S., Jalali, A., Abdullahi, M.A.M. and Khorami, M. (2018), "Experimental investigations on monotonic and cyclic behavior of steel pallet rack connections", Eng. Fail. Anal., 85, 149-166. https://doi.org/10.1016/j.engfailanal.2017.08.014.
  68. Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2019a), "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., Int. J., 19(6), 473-484. https://doi.org/10.12989/gae.2019.19.6.473.
  69. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N. (2019b), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., Int. J., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569.
  70. Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019c), "Application of a hybrid artificial neural networkparticle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.
  71. Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019d), "Application of extreme learning machine (ELM) and genetic programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., Int. J., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  72. Shariati, M., Trung, N.T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019e), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel Compos. Struct., Int. J., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
  73. Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2020a), "Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load", Geomech. Eng., Int. J., 20(2), 87-101. https://doi.org/10.12989/gae.2020.20.2.087.
  74. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020b), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 2020, 1-23. https://doi.org/10.1007/s00366-020-01081-0.
  75. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020c), "Identification of the most influencing parameters on the properties of corroded concrete beams using an adaptive neuro-fuzzy inference system (ANFIS)", Steel Compos. Struct., Int. J., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155.
  76. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020d), "Prediction of concrete strength in presence of furnace slag and fly ash using hybrid ANN-GA (artificial neural network-genetic algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.
  77. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2020e), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 2020, 1-21. https://doi.org/10.1007/s00366-019-00930-x.
  78. Shariati, M., Naghipour, M., Yousofizinsaz, G., Toghroli, A. and Tabarestani, N.P. (2020f), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct., Int. J., 34(3), 377-391. https://doi.org/10.12989/scs.2020.34.3.377.
  79. Shariati, M., Shariati, A., Trung, N.T., Shoaei, P., Ameri, F., Bahrami, N. and Zamanabadi, S.N. (2020g), "Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics", Constr. Build. Mater., 2020, 120886 https://doi.org/10.1016/j.conbuildmat.2020.120886.
  80. Shariati, M., Tahmasbi, F., Mehrabi, P., Bahadori, A. and Toghroli, A. (2020h), "Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: An experimental investigation", Steel Compos. Struct., Int. J., 35(2), 237-247. https://doi.org/10.12989/scs.2020.35.2.237.
  81. Sinaei, H., Shariati, M., Abna, A.H., Aghaei, M. and Shariati, A. (2012), "Evaluation of reinforced concrete beam behaviour using finite element analysis by ABAQUS", Sci. Res. Essays, 7(21), 2002-2009. https://doi.org/10.5897/SRE11.1393.
  82. Soliman, M.M. (2010), Engineering Hydrology of Arid and Semi-arid Regions, CRC Press, New York, USA.
  83. Strand, R. and Pemberton, E. (1987), "Design of small dams", United States Department of the Interior, Bureau of Reclamation, USA.
  84. Suhatril, M., Osman, N., Sari, P.A., Shariati, M. and Marto, A. (2019), "Significance of surface eco-protection techniques for cohesive soils slope in Selangor, Malaysia", Geotech. Geol. Eng., 37(3), 2007-2014. https://doi.org/10.1007/s10706-018-0740-3.
  85. Toghroli, A. (2015), "Applications of the ANFIS and LR models in the prediction of shear connection in composite beams", MS.c. Dissertation, University of Malaya, Malaya, Malaysia.
  86. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. http://dx.doi.org/10.12989/scs.2014.17.5.623.
  87. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manuf., 2016, 1-9. http://dx.doi.org/10.1007/s10845-016-1217-y.
  88. Toghroli, A., Darvishmoghaddam, E., Zandi, Y., Parvan, M., Safa, M., Abdullahi, M.A.M., Heydari, A., Wakil, K., Gebreel, S.A. and Khorami, M. (2018), "Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method", Comput. Concrete, Int. J., 21(5), 525-530. https://doi.org/10.12989/cac.2018.21.5.525.
  89. Trung, N.T., Shahgoli, A.F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., Int. J., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
  90. Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., Nguyen, H. and Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., Int. J., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.
  91. Yang, C.T. (1996), Sediment Transport: Theory and Practice, Mcgraw-Hill, New York, USA.
  92. Yazdani, M., Kabirifar, K., Frimpong, B.E., Shariati, M., Mirmozaffari, M. and Boskabadi, A. (2020), "Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia", J. Clean. Prod., 2020, 124138. https://doi.org/10.1016/j.jclepro.2020.124138.
  93. Zabaleta, A., Martinez, M., Uriarte, J.A. and Antiguedad, I. (2007), "Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque country", Catena, 71(1), 179-190. https://doi.org/10.1016/j.catena.2006.06.007.
  94. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D., Toghroli, A., Hashemi, M.H., Sedghi, Y. and Wakil, K. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447. https://doi.org/10.12989/scs.2018.28.4.439.
  95. Zhao, X., Fourie, A. and Qi, C.C. (2019), "An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon", Int. J. Miner. Metall. Mater., 26(10), 1206-1216. https://doi.org/10.1007/s12613-019-1885-7.
  96. Zhao, X., Fourie, A. and Qi, C.C. (2020a), "Mechanics and safety issues in tailing-based backfill: A review", Int. J. Miner. Metall. Mater., 27(9), 1165-1178. https://doi.org/10.1007/s12613-020-2004-5.
  97. Zhao, X., Fourie, A., Veenstra, R. and Qi, C.C. (2020b), "Safety of barricades in cemented paste-backfilled stopes", Int. J. Miner. Metall. Mater., 27(8), 1054-1064. https://doi.org/10.1007/s12613-020-2006-3.