DOI QR코드

DOI QR Code

Distributed Control Framework based on Mobile Agent Middleware

  • Lee, Yon-Sik (School of Computer Information and Communication Engineering, Kunsan National University)
  • Received : 2020.10.12
  • Accepted : 2020.12.01
  • Published : 2020.12.31

Abstract

The control system for the efficiency of resource utilization in sensor network environment based on object detection and environmental sensor requires active control function which based on sensor data acquisition and transmission functions and server's data analysis. Using active rule-based mobile agent middleware, this paper proposes a new distributed control framework that reduces the load of central sensor data server in sensor network environment by implementing remote data sensing and Zigbee-based communication with server and data analysis method of server. In addition, we implemented a power-saving system prototype using active rule-based distributed control methods that applied consumer's demand and environmental variables, and verified the validity of the proposed system through experiments and evaluations in the mobile agent middleware environment. The proposed system is a system framework that can efficiently autonomously control distributed objects in the sensor network environment, and it can be applied effectively to the development of demand response service based on optimal power control for the smart power system in the future.

객체 감지 및 환경 센서 기반의 센서네트워크 환경에서 자원 활용 효율화를 위한 제어 시스템은 센서데이터 획득 및 송수신 기능과 서버에서의 분석을 기반으로 하는 능동적 제어 기능을 필요로 한다. 본 논문은 능동규칙 기반 이동에이전트 미들웨어를 이용하여 원격 데이터 센싱과 서버와의 Zigbee 기반 통신 및 서버의 데이터 분석 방법을 구현함으로써, 센서네트워크 환경에서 중앙 센서데이터 서버의 부하를 감소시키는 새로운 분산제어 프레임워크를 제안한다. 또한, 수요자의 요구 및 환경 변수들을 적용한 능동규칙 기반의 분산제어 방법을 이용한 절전 시스템 프로토타입을 구현하고, 이동에이전트 미들웨어 환경에서 실험과 평가를 통하여 유효성을 검증하였다. 제안 시스템은 센서네트워크 환경에서 분산된 객체들을 효율적으로 자율제어할 수 있는 시스템 프레임워크이며, 향후 스마트 전력 시스템을 위한 최적 전력제어 기반의 수요 반응 서비스 개발에 효과적 적용이 가능하다.

Keywords

References

  1. X. Zhang, "A Node Localization Algorithm based on Wireless Sensor Network," International Journal of Performability Engineering, 14(4), pp. 821-830, 2018. https://doi.org/10.23940/ijpe.18.04.p24.821830
  2. K. Jin, et. al., "Wi-Fi RSSI-Based Indoor Location Detection System with IoT Device," Journal of KICIS, 42(12), pp. 2346-2349, 2017. https://doi.org/10.7840/kics.2017.42.12.2346
  3. Y. Lee, M. Jang, "Location Trigger System for the Application of Context-Awareness based Location services," Journal of the KSCI, 24(10), pp. 149-157, 2019. https://doi.org/10.9708/jksci.2019.24.10.149
  4. S. Feng, "WSN Deployment and Localization Using a Mobile Agent," Wireless Personal Communications, 97(4), pp. 4921-4931, 2017. https://doi.org/10.1007/s11277-017-4747-5
  5. H. Park, "Design of the Agent Migration Information System for Shortest Migration Order," The KIPS Transactions : Part A, 9A(4), pp. 555-562, 2002. https://doi.org/10.3745/kipsta.2002.9a.4.555
  6. K. Lingaraj, et al., "OMMIP: An optimized multiple mobile agents itinerary planning for wireless sensor networks," Journal of Information and Optimization Sciences, 38(6). pp. 1067-1076, 2017. https://doi.org/10.1080/02522667.2017.1374740
  7. P. Ardakani, "A Mobile Agent Routing Protocol for Data Aggregation in Wireless Sensor Networks," International Journal of Wireless Information Networks, 24(1), pp. 27-41, 2017. https://doi.org/10.1007/s10776-016-0327-y
  8. S. Sasirekha, et. al., "Cluster-chain mobile agent routing algorithm for efficient data aggregation in wireless sensor network," Journal of Communications and Networks, 19(4), pp. 392-401, 2017. https://doi.org/10.1109/jcn.2017.000063
  9. Y. S. Lee, "Lightweight and Migration Optimization Algorithms for Reliability Assurance of Migration of the Mobile Agent,"Journal of The Korea Society of Computer and Information, Vol.25, No.5, pp. 91-98, 2020. https://doi.org/10.9708/jksci.2020.25.05
  10. G. Damianos, et al., "Mobile agent itinerary planning for WSN data fusion: considering multiple sinks and heterogeneous networks," International Journal of Communication Systems, 30(8), 2017. https://doi.org/10.1002/dac.3184
  11. G. Cabri, et. al., "Strong agent mobility for aglets based on the IBM JikesRVM," Proceedings of the 2006 ACM symposium on Applied computing, pp. 90-95, 2006. https://doi.org/10.1145/1141277.1141298
  12. H. Ito, Y. Miyagi, "A Study on Distance-Based Control of Mobile Agents for Formation Avoiding Entire and Partial Reflection," Proceedings of ICCAS 2019, pp. 753-758, 2019. https://doi.org/10.23919/iccas47443.2019.8971714
  13. Y. Yang, et. al., "Detecting and resolving deadlocks in mobile agent systems," Journal of Computer Languages, 42, pp. 23-30, 2017. https://doi.org/10.1016/j.jvlc.2017.08.002
  14. D. Kim, J. Lim, S. Kim, "Design of Mobile-based Security Agent for Contents Networking in Mixed Reality," Journal of Convergence for Information Technology, 9(3), pp.22-29, 2019. http://dx.doi.org/10.22156/CS4SMB.2019.9.3.022