DOI QR코드

DOI QR Code

An Enhanced Control Protocol Design for LADN in 5G Wireless Networks

  • Kim, Jae-Hyun (Dept. of Information & Communication Eng., Andong National University)
  • 투고 : 2020.11.16
  • 심사 : 2020.12.16
  • 발행 : 2020.12.31

초록

본 논문에서는 5G 무선 네트워크에서 높은 처리율, 저지연 및 서비스 영역화를 제공하기 위한 LADN(로컬 영역 데이터망)을 살펴보고, LADN을 위한 향상된 제어 프로토콜 설계 방안을 제안한다. LADN은 3GPP 5G 통신 시스템에서 새롭게 도입된 개념으로써, 단말(UE)이 특성 서비스 영역에 위치해 있을 때, 특정 LADN 세션을 연결할 수 있는 데이터 네트워크를 의미한다. 5G 무선 네트워크에서 단말과 핵심 망의 LADN 정보가 동일하지 않은 경우가 발생했을 때, 단말의 LADN 세션 설정이 실패하게 된다. 본 논문에서 제안하는 기법은 특정 등록 절차 수행을 통하여 단말과 5G 핵심 망의 LADN 정보를 신속하게 갱신하여 일치시키고 곧바로 LADN 세션을 적절하게 설정한다. 결과적으로, 제안하는 ECP 기법은 5G 무선 네트워크에서 LADN 서비스 제공을 위한 세션 연결 수행 시, 불필요한 제어 신호 오버헤드 및 통신 지연 발생을 방지할 수 있다.

In this paper, we analyze LADN(Local Area Data Network) that provides high throughput, low latency and service localization for 5G wireless networks and propose an enhanced control protocol design for LADN in 5G wireless networks. The concept of LADN is newly introduced in 3GPP 5G communication system and the LADN is a data network to which the UE(User Equipment) can connect with a specific LADN session only when the UE is located in a certain service area. If the LADN information between the UE and core network is not identical, the LADN session cannot be properly established. The proposed approach promplty synchronizes the LADN information between the UE and core network by using the specific registration procedure and appropriately establishes the LADN session, when the establishment of the LADN session is failed. Consequently, the proposed enhanced control protocol design(ECP) can prevent unnecessary signalling overhead and communication delay for LADN in 5G wireless networks.

키워드

과제정보

This work was supported by a grant from 2019 Research Fund of Andong National University.

참고문헌

  1. J.C. Lee, S.J. Moon, B.S. Bae, and J.S. Lee, "Local Area Data Network for 5G System Architecture," Proceedings of 2018 IEEE 5G World Forym (5GWF), pp. 141-146, July 2018. DOI: 10.1109/5GWF.2018.8516919
  2. S.Y. Lien, S.C. Hung, D.J. Deng, C.L. Lai, and H.L. Tsai, "Low Latency Radio Access in 3GPP Local Area Data Networks for V2X: Stochastic Optimization and Learning," IEEE Access, vol. 6, pp. 4867-4879, Jun. 2019. DOI: 10.1109/JIOT.2018.2874883
  3. A. Chosh, A. Maeder, M. Baker, and D. Chandramouli, "5G volution: A View on 5G Cellular Technology Beyond 3GPP Release 15," IEEE Access, vol. 7, pp. 127639-127651, Sep. 2019. DOI: 10.1109/ACCESS.2019.2939938
  4. N.K. Kim, Y.J. Kim, J.W. Huh, J.Y. Choi, J.Y. Choi, Y.S. Kim, W.S. Na, L.H. Park, and S.R. Cho, "The need for 5G in the Age of Fourth Industrial Revolution and a Standardization Trends about 5G Mobile Communication," Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, pp. 739-740, June 2017.
  5. J.S. Kim and M.H. Lee, "5G Mobile Communications: 4th Industrial Aorta," The Journal of the Convergence on Culture Technology, Vol. 4, No. 1, pp. 337-351, Feb. 2018. https://doi.org/10.17703/JCCT.2018.4.1.337
  6. O.S. Park, S.K. Kim, G.Y. Park, W.R. Shin, and J.S. Shin, "Technical Trends of Ultra-Reliable Low-Latency Communication for 5G," ETRI Electronics and Telecommunications Trends, Vol. 34, No. 6, pp. 42-50, Dec. 2019.
  7. T.K. Kang, Y.H. Kang, Y.C. Ryoo, and T.S. Cheung, "Research Trend in Ultra-Low Latency Networking for Fourth Industrial Revolution," ETRI Electronics and Telecommunications Trends, Vol. 34, No. 6, pp. 108-122, Dec. 2019.
  8. 3GPP TS 22.261 v16.10.0: "Service requirements for the 5G system; Stage 1", Dec. 2019.
  9. 3GPP TS 23.501 v15.8.0: "System Architecture for the 5G System; Stage 2", Dec. 2019.
  10. 3GPP TS 23.502 v15.8.0: "Procedures for the 5G System; Stage 2", Dec. 2019.
  11. 3GPP TS 24.501 v15.6.0: "Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3". Dec. 2019.
  12. 3GPP TS 38.331 v15.8.0: "NR; Radio Resource Control (RRC); Protocol specification", Jan. 2020.
  13. 3GPP TS 38.413 v15.6.0: "NG-RAN; NG Application Protocol (NGAP)", Jan. 2020.
  14. 3GPP TS 23.401 v15.10.0: "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access (Release 15)", Dec. 2019.
  15. J.H. Kim and S.G. Kim, "Service Area based Congestion Control in 5G Systems," Proceedings of 2019 KIISE Symposium (UCWIT2019), pp. 59-62, Nov. 2019.
  16. Nam-Sun Kim, "Group Based Two-Layer Mobility Management of MTC Devices in 5G network," Journal of Korea Institute of Information, Electronics, and Communication Technology, Vol. 11, No. 6, pp. 631-637, Dec. 2018. https://doi.org/10.17661/JKIIECT.2018.11.6.631
  17. K.J. Sun and Y.H. Kim, "Performance Analysis of Mobility Management in Distributed 5G Network Architecture," The Journal of Korean Institute of Communications and Information Sciences, Vol. 43, No. 11, pp. 1840-1851, Nov. 2018. DOI: 10.7840/kics.2018.43.11.1840
  18. S.Y. Choi, H.J. Lee, and S.W. Bahk, "A Study on the Ultra-Reliable Low Latency Communications in 5G Cellular Networks," Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, pp. 482-483, Jan. 2017.
  19. S.K. Baek, J.S. Song, H.S. Jung, and I.K. Kim, "A Standardization Activity of Integrated Access and Backhaul Network for 5G Mobile Communication Service," The Korea Insitute of Information Technology Magazine, Vol. 18, No. 1, pp. 1-7, June. 2020.
  20. T. Deng, X. Wang, P. Fan, and K. Li, "Modeling and Performance Analysis of a Tracking-Area-List-Based Location Management Scheme in LTE Networks," IEEE Transactions on Vehicular Techonology, Vol. 65, No. 8, pp. 6417-6431, Aug. 2016. DOI: 10.1109/TVT.2015.2473704
  21. H.R. Cheon, S.H. Kang, S.Q. Lee, and J.H. Kim, "LTE LIPA/SIPTO Offloading Algorithm according to the Network Load and Offloading Preference," Proceedings of KICS Winter Conference, pp. 291-292, Feb. 2014.
  22. MATLAB, https:/kr.mathworks.com