DOI QR코드

DOI QR Code

Fabrication and characterization of superconducting coplanar waveguide resonators

  • Kim, Bongkeon (Department of Physics and Photon Science, Gwangju Institute of Science and Technology) ;
  • Jung, Minkyung (DGIST Research Institute, DGIST) ;
  • Kim, Jihwan (Quantum Technology Institute, Korea Research Institute of Standards and Science) ;
  • Suh, Junho (Quantum Technology Institute, Korea Research Institute of Standards and Science) ;
  • Doh, Yong-Joo (Department of Physics and Photon Science, Gwangju Institute of Science and Technology)
  • Received : 2020.11.16
  • Accepted : 2020.12.25
  • Published : 2020.12.31

Abstract

High-quality superconducting coplanar waveguide (SCPW) resonators are crucial for developing superconducting quantum information devices and sensors. We designed quarter-wavelength SCPW resonators and fabricated the SCPW resonators using Nb thin film. The resonant characteristics were measured at T = 4.2 K, revealing the intrinsic quality factor and the coupling quality factor to be Qi = 4,784 and Qc = 17, 980, respectively. Our design and fabrication techniques would be very useful to develop a gate-tunable superconducting qubit based on the semiconductor nanostructures.

Keywords

References

  1. R. Simons, Coplanar waveguide circuits, components, and systems (John Wiley, New York, 2001), Wiley series in microwave and optical engineering, pp. 24 - 33.
  2. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, Nature, vol. 425, pp. 817 - 821 (2003). https://doi.org/10.1038/nature02037
  3. J. Clarke and F. K. Wilhelm, Nature, vol. 453, pp.1031 - 1042 (2008). https://doi.org/10.1038/nature07128
  4. K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor et al., Nature, vol. 490, pp. 380 - 383 (2012). https://doi.org/10.1038/nature11559
  5. B. D. Josephson, Physics Letters, vol. 1, no. 7, pp. 251 - 253 (1962). https://doi.org/10.1016/0031-9163(62)91369-0
  6. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang et al., Nature, vol. 431, pp. 162 - 167 (2004). https://doi.org/10.1038/nature02851
  7. Y.-J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven et al., Science, vol. 309, pp. 272-275 (2005). https://doi.org/10.1126/science.1113523
  8. B.-K. Kim, H.-S. Kim, Y. Yang, X. Peng, D. Yu et al., ACS Nano, vol. 11, pp. 221 - 226 (2017). https://doi.org/10.1021/acsnano.6b04774
  9. J. Kim, B.-K. Kim, H.-S. Kim, A. Hwang, B. Kim et al., Nano Letters, vol. 17, pp. 6997 - 7002 (2017). https://doi.org/10.1021/acs.nanolett.7b03571
  10. T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup et al., Physical Review Letters, vol. 115, pp. 127001 (2015). https://doi.org/10.1103/PhysRevLett.115.127001
  11. G. de Lange, B. van Heck, A. Bruno, D. J. van Woerkom, A. Geresdi et al., Physical Review Letters, vol. 115, pp. 127002 (2015). https://doi.org/10.1103/PhysRevLett.115.127002
  12. J. Kim, A. Hwang, S.-H. Lee, S.-H. Jhi, S. Lee et al., ACS Nano, vol. 10, pp. 3936 - 3943 (2016). https://doi.org/10.1021/acsnano.5b07368
  13. H.-S. Kim, T.-H. Hwang, N.-H. Kim, Y. Hou, D. Yu et al., ACS Nano, vol. 14, pp. 14118-14125 (2020). https://doi.org/10.1021/acsnano.0c06892
  14. L. Fu, C. L. Kane, and E. J. Mele, Physical Review Letters, vol. 98, pp. 106803 (2007). https://doi.org/10.1103/PhysRevLett.98.106803
  15. E. Ginossar and E. Grosfeld, Nature Communications, vol. 5, pp. 4772 (2014). https://doi.org/10.1038/ncomms5772
  16. W.-C. Huang, Q.-F. Liang, D.-X. Yao, and Z. Wang, EPL (Europhysics Letters) vol. 110, no. 3, pp. 37010 (2015). https://doi.org/10.1209/0295-5075/110/37010
  17. D. S. Wisbey, M. R. Vissers, J. Gao, J. S. Kline, M. O. Sandberg et al., Journal of Low Temperature Physics, vol. 195, pp. 474 - 486 (2019). https://doi.org/10.1007/s10909-019-02183-w
  18. D. Bothner, T. Gaber, M. Kemmler, D. Koelle, and R. Kleiner, Applied Physics Letters, vol. 98, pp. 102504 (2011). https://doi.org/10.1063/1.3560480
  19. K. Watanabe, K. Yoshida, T. Aoki, and S. Kohjiro, Japanese Journal of Applied Physics, vol. 33, pp. 5708 - 5712 (1994). https://doi.org/10.1143/JJAP.33.5708
  20. C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics (Wiley New York, 1996), vol. 8. pp. 275.
  21. B. A. Mazin, California Institute of Technology, 2005.
  22. L. Frunzio, A. Wallraff, D. Schuster, J. Majer, and R. Schoelkopf, IEEE Transactions on Applied Superconductivity. vol. 15, pp. 860 - 863 (2005). https://doi.org/10.1109/TASC.2005.850084
  23. J. Kim, Y.-J. Doh, K. Char, H. Doh, and H.-Y. Choi, Physical Review B, vol. 71, pp. 214519 (2005). https://doi.org/10.1103/PhysRevB.71.214519
  24. M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, and K. D. Osborn, Journal of Applied Physics vol. 111, pp. 054510 (2012). https://doi.org/10.1063/1.3692073
  25. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen et al., Applied Physics Letters vol. 100, pp. 113510 (2012). https://doi.org/10.1063/1.3693409