Browse > Article
http://dx.doi.org/10.9714/psac.2020.22.4.010

Fabrication and characterization of superconducting coplanar waveguide resonators  

Kim, Bongkeon (Department of Physics and Photon Science, Gwangju Institute of Science and Technology)
Jung, Minkyung (DGIST Research Institute, DGIST)
Kim, Jihwan (Quantum Technology Institute, Korea Research Institute of Standards and Science)
Suh, Junho (Quantum Technology Institute, Korea Research Institute of Standards and Science)
Doh, Yong-Joo (Department of Physics and Photon Science, Gwangju Institute of Science and Technology)
Publication Information
Progress in Superconductivity and Cryogenics / v.22, no.4, 2020 , pp. 10-13 More about this Journal
Abstract
High-quality superconducting coplanar waveguide (SCPW) resonators are crucial for developing superconducting quantum information devices and sensors. We designed quarter-wavelength SCPW resonators and fabricated the SCPW resonators using Nb thin film. The resonant characteristics were measured at T = 4.2 K, revealing the intrinsic quality factor and the coupling quality factor to be Qi = 4,784 and Qc = 17, 980, respectively. Our design and fabrication techniques would be very useful to develop a gate-tunable superconducting qubit based on the semiconductor nanostructures.
Keywords
superconducting resonator; coplanar waveguide; circuit quantum electrodynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Simons, Coplanar waveguide circuits, components, and systems (John Wiley, New York, 2001), Wiley series in microwave and optical engineering, pp. 24 - 33.
2 P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, Nature, vol. 425, pp. 817 - 821 (2003).   DOI
3 J. Clarke and F. K. Wilhelm, Nature, vol. 453, pp.1031 - 1042 (2008).   DOI
4 K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor et al., Nature, vol. 490, pp. 380 - 383 (2012).   DOI
5 B. D. Josephson, Physics Letters, vol. 1, no. 7, pp. 251 - 253 (1962).   DOI
6 A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang et al., Nature, vol. 431, pp. 162 - 167 (2004).   DOI
7 Y.-J. Doh, J. A. van Dam, A. L. Roest, E. P. A. M. Bakkers, L. P. Kouwenhoven et al., Science, vol. 309, pp. 272-275 (2005).   DOI
8 B.-K. Kim, H.-S. Kim, Y. Yang, X. Peng, D. Yu et al., ACS Nano, vol. 11, pp. 221 - 226 (2017).   DOI
9 J. Kim, B.-K. Kim, H.-S. Kim, A. Hwang, B. Kim et al., Nano Letters, vol. 17, pp. 6997 - 7002 (2017).   DOI
10 T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup et al., Physical Review Letters, vol. 115, pp. 127001 (2015).   DOI
11 G. de Lange, B. van Heck, A. Bruno, D. J. van Woerkom, A. Geresdi et al., Physical Review Letters, vol. 115, pp. 127002 (2015).   DOI
12 J. Kim, A. Hwang, S.-H. Lee, S.-H. Jhi, S. Lee et al., ACS Nano, vol. 10, pp. 3936 - 3943 (2016).   DOI
13 H.-S. Kim, T.-H. Hwang, N.-H. Kim, Y. Hou, D. Yu et al., ACS Nano, vol. 14, pp. 14118-14125 (2020).   DOI
14 L. Fu, C. L. Kane, and E. J. Mele, Physical Review Letters, vol. 98, pp. 106803 (2007).   DOI
15 E. Ginossar and E. Grosfeld, Nature Communications, vol. 5, pp. 4772 (2014).   DOI
16 W.-C. Huang, Q.-F. Liang, D.-X. Yao, and Z. Wang, EPL (Europhysics Letters) vol. 110, no. 3, pp. 37010 (2015).   DOI
17 C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics (Wiley New York, 1996), vol. 8. pp. 275.
18 D. S. Wisbey, M. R. Vissers, J. Gao, J. S. Kline, M. O. Sandberg et al., Journal of Low Temperature Physics, vol. 195, pp. 474 - 486 (2019).   DOI
19 D. Bothner, T. Gaber, M. Kemmler, D. Koelle, and R. Kleiner, Applied Physics Letters, vol. 98, pp. 102504 (2011).   DOI
20 K. Watanabe, K. Yoshida, T. Aoki, and S. Kohjiro, Japanese Journal of Applied Physics, vol. 33, pp. 5708 - 5712 (1994).   DOI
21 B. A. Mazin, California Institute of Technology, 2005.
22 L. Frunzio, A. Wallraff, D. Schuster, J. Majer, and R. Schoelkopf, IEEE Transactions on Applied Superconductivity. vol. 15, pp. 860 - 863 (2005).   DOI
23 J. Kim, Y.-J. Doh, K. Char, H. Doh, and H.-Y. Choi, Physical Review B, vol. 71, pp. 214519 (2005).   DOI
24 M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, and K. D. Osborn, Journal of Applied Physics vol. 111, pp. 054510 (2012).   DOI
25 A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen et al., Applied Physics Letters vol. 100, pp. 113510 (2012).   DOI