DOI QR코드

DOI QR Code

Synthesis of Polyurethane Foam at Room Temperature by Controlling the Gelling Reaction Time

겔화 반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성

  • Lee, Hojoon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Oh, Chungik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Liow, Chi Hao (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Soyeon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Han, Youngjoon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Oh, Min-Seok (Poongsan R&D Institute) ;
  • Joo, Hyeong-Uk (Poongsan R&D Institute) ;
  • Chang, Soo-Ho (Poongsan R&D Institute) ;
  • Hong, Seungbum (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 이호준 (한국과학기술원 신소재공학과) ;
  • 오충익 (한국과학기술원 신소재공학과) ;
  • ;
  • 김소연 (한국과학기술원 신소재공학과) ;
  • 한영준 (한국과학기술원 신소재공학과) ;
  • 오민석 ((주)풍산 기술연구원) ;
  • 주형욱 ((주)풍산 기술연구원) ;
  • 장수호 ((주)풍산 기술연구원) ;
  • 홍승범 (한국과학기술원 신소재공학과)
  • Received : 2020.09.04
  • Accepted : 2020.10.26
  • Published : 2020.12.10

Abstract

We developed a processing recipe to synthesize flexible polyurethane foam with a pore size of 335 ± 107 ㎛. The gelling reaction time was varied from 0 to 30 minutes and the physical properties of the foam were evaluated. The gelling reaction where the polypropylene glycol and tolylene 2,4-diisocyanate (TDI) were reacted to form urethane prepolymer, proceeded until a chemical blowing agent, deionized water, was introduced. Fourier transform infrared (FT-IR) spectra showed that the composition of the foam did not change but the foam height reached a peak value when the gelling reaction time was 10 minutes. We found that increasing the gelling time lessened the coalescence and helped the formation of cells. Lastly, the repeatability of polyurethane foam was confirmed by one-way analysis of variance (ANOVA) by synthesizing ten identical polyurethane foams under the same experimental conditions, including the gelling reaction time. Overall, the new time parameter in-between the gelling and blowing reactions will give extra stability in manufacturing identical polyurethane foams and can be applied to various polyurethane foam processes.

Keywords

References

  1. O. Bayer, Das Di-isocyanat-polyadditionsverfahren (polyurethane), Angew. Chemie, 59, 257-272 (1947). https://doi.org/10.1002/ange.19470590901
  2. R. B. Seymour and G. B. Kauffman, Products of chemistry - polyurethanes: A class of modern versatile materials, J. Chem. Educ., 69, 909-910 (1992). https://doi.org/10.1021/ed069p909
  3. H. Choi, S. polyol for polyurethane and foam, Polym. Sci. Technol., 10, 621-628 (1999).
  4. H. S. Kang and S. B. Kim, Synthesis and characterization of polyurethane-silica composite foam, Appl. Chem. Eng., 31, 30-35 (2020).
  5. J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, Polyurethane types, synthesis and applications - A review, RSC Adv., 6, 114453-114482 (2016). https://doi.org/10.1039/C6RA14525F
  6. J. Bchnlein-Mau and H. Krober, Technology of foamed propellants, Propellants Explos. Pyrotech., 34, 239-244 (2009). https://doi.org/10.1002/prep.200800113
  7. W. Yang, J. Yang, Y. Zhao, and Y. Zhang, Preparation and structure study of water-blown polyurethane/RDX gun propellant foams, J. Energ. Mater., 36, 121-126 (2018). https://doi.org/10.1080/07370652.2017.1320598
  8. J. Bohnlein-MauB, A. Eberhardt, and T. S. Fischer, Foamed propellants, Propellants Explos. Pyrotech., 27, 156-160 (2002). https://doi.org/10.1002/1521-4087(200206)27:3<156::AID-PREP156>3.0.CO;2-P
  9. S. Kang, I. Cho, and S. Kim, Effect of isocyanate index on the physical properties of rigid polyurethane foam under sea water, J. Korean Ind. Eng. Chem., 19, 427-431 (2008).
  10. H. Dodiuk and S. H. Goodman, Handbook of Thermoset Plastics, Elsevier, Doi:10.1016/C2011-0-09694-1 (2013).
  11. P. Krol, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Prog. Mater. Sci., 52, 915-1015 (2007). https://doi.org/10.1016/j.pmatsci.2006.11.001
  12. A. Asefnejad, M. T. Khorasani, A. Behnamghader, B. Farsadzadeh, and S. Bonakdar, Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay, Int. J. Nanomedicine, 6, 2375-2384 (2011). https://doi.org/10.2147/ijn.s15586
  13. S. M. Kim, S. H. Kim, E. J. Lee, H. J. Park, and K. Y. Lee, Curing kinetics of polyurethane elastomers depending on the amount of curing agent and temperatures by real time FTIR spectroscopy, Polym., 41, 610-618 (2017). https://doi.org/10.7317/pk.2017.41.4.610
  14. M. Barrere and K. Landfester, High molecular weight polyurethane and polymer hybrid particles in aqueous miniemulsion, Macromolecules, 36, 5119-5125 (2003). https://doi.org/10.1021/ma025981+
  15. X. D. Zhang, C. W. Macosko, H. T. Davis, A. D. Nikolov, and D. T. Wasan, Role of silicone surfactant in flexible polyurethane foam, J. Colloid Interface Sci., 215, 270-279 (1999). https://doi.org/10.1006/jcis.1999.6233
  16. T. K. Kim, Understanding one-way anova using conceptual figureures, Korean J. Anesthesiol., 70, 22-26, Doi:10.4097/kjae.2017.70.1.22g (2017).