DOI QR코드

DOI QR Code

Reducing speckle artifacts in digital holography through programmable filtration

  • Lim, Yongjun (Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Park, Jae-Hyeung (Department of Information and Communication Engineering, Inha University) ;
  • Hahn, Joonku (School of Electronics Engineering, Kyungpook National University) ;
  • Kim, Hayan (Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Hong, Keehoon (Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Jinwoong (Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute)
  • Received : 2018.10.07
  • Accepted : 2018.12.17
  • Published : 2019.02.12

Abstract

We propose a speckle reduction technique in electronic holographic display systems, where digital micro-mirror array devices are used as spatial light modulators. By adopting a programmable filtration in a general 4-f optic configuration, it is shown that the signal spectrum components in the frequency domain of a viewing-window-based holographic display system can be selectively filtered. Compared to the widely utilized single-sideband filtration techniques in electronic holographic display systems, our proposed programmable filtration can be utilized to effectively reduce the speckles in the reconstruction of point-cloud-based computer-generated holograms. Experimental results are presented to verify our proposed concept.

Keywords

References

  1. J. W. Goodman, Speckle phenomena in optics: Theory and Applications, Roberts and Company Publishers, Englewood, CO, USA, 2007.
  2. J. Hong et al., Three-dimensional display technologies of recent interest: Principles, status, and issues, Appl. Opt. 50 (2011), no. 34, H87-H115. https://doi.org/10.1364/AO.50.000H87
  3. L. Onural, F. Yaras, and H. Kang, Digital holographic threedimensional video display, Proc. IEEE 99 (2011), no. 4, 576-589. https://doi.org/10.1109/JPROC.2010.2098430
  4. F. Yaras, H. Kang, and L. Onural, Real-time phase-only color holographic video display system using LED illumination, Appl. Opt. 48 (2009), no. 34, H48-H53. https://doi.org/10.1364/AO.48.000H48
  5. T. S. McKechnie, Speckle reduction in laser speckle and related phenomena, J. C. Dainty ed., Springer-Verlag, Berlin/Heidelberg, 1975.
  6. V. Bianco et al., Strategies for reducing speckle noise in digital holography, Light Sci. Appl. 7 (2018), no. 1, 48:1-48:16.
  7. V. Bianco et al., Quasi noise-free digital holography, Light Sci. Appl. 5 (2016), no. 9, e16142:1-e16142:12.
  8. A. Uzan, Y. Rivenson, and A. Stern, Speckle denoising in digital holography by nonlocal means filtering, Appl. Opt. 52 (2013), A195-A200. https://doi.org/10.1364/AO.52.00A195
  9. M. Leo et al., Automatic digital hologram denoising by spatiotemporal analysis of pixel-wise statistics, J. Display Technol. 9 (2013), no. 11, 904-909. https://doi.org/10.1109/JDT.2013.2268936
  10. M. Leo et al., Multilevel bidimensional empirical mode decomposition: A new speckle reduction method in digital holography, Opt. Eng. 53 (2014), no. 11, 112314:1-112314:10.
  11. P. Memmolo et al., Encoding multiple holograms for specklenoise reduction in optical display, Opt. Express 22 (2014), no. 21, 25768-25775. https://doi.org/10.1364/OE.22.025768
  12. Y. Rivenson, A. Stern, and J. Rosen, Compressive multiple view projection incoherent holography, Opt. Express 19 (2011), no. 7, 6109-6118. https://doi.org/10.1364/OE.19.006109
  13. Y. Takaki and M. Yokouchi, Speckle-free and grayscale hologram reconstruction using time-multiplexing technique, Opt. Express 19 (2011), no. 8, 7567-7579. https://doi.org/10.1364/OE.19.007567
  14. T. Kurihara and Y. Takaki, Speckle-free, shaded 3D images produced by computer-generated holography, Opt. Express 21 (2013), no. 4, 4044-4054. https://doi.org/10.1364/OE.21.004044
  15. S. -B. Ko and J. -H. Park, Speckle reduction using angular spectrum interleaving for triangular mesh-based computer-generated hologram, Opt. Express 25 (2017), no. 24, 29788-29797. https://doi.org/10.1364/OE.25.029788
  16. T. M. Kreis, P. Aswendt, and R. Hoefling, Hologram reconstruction using a digital micromirror device, Opt. Eng. 40 (2001), no. 6, 926-933. https://doi.org/10.1117/1.1367346
  17. J. -Y. Son et al., Holographic display based on a spatial DMD array, Opt. Lett. 38 (2013), no. 16, 3173-3176. https://doi.org/10.1364/OL.38.003173
  18. T. Inoue and Y. Takaki, Table screen 360-degree holographic display using circular viewing-zone scanning, Opt. Express 23 (2015), no. 5, 6533-6542. https://doi.org/10.1364/OE.23.006533
  19. O. Bryngdahl and A. Lohmann, Single-sideband holography, J. Opt. Soc. Am. 58 (1968), no. 5, 620-624. https://doi.org/10.1364/JOSA.58.000620
  20. Y. Takaki and Y. Tanemoto, Band-limited zone plates for singlesideband holography, Appl. Opt. 48 (2009), no. 34, H64-H70. https://doi.org/10.1364/AO.48.000H64
  21. J. -H. Park, Recent progresses in computer generated holography for three-dimensional scene, J. Inform. Display 18 (2017), no. 1, 1-12. https://doi.org/10.1080/15980316.2016.1255672
  22. Y. Lim et al., 360-degree tabletop electronic holographic display, Opt. Express 24 (2016), no. 22, 24999-25009. https://doi.org/10.1364/OE.24.024999
  23. M. Kim et al., Expanded exit-pupil holographic head-mounted display with high-speed digital micromirror device, ETRI J. 40 (2018), no. 5, 366-375. https://doi.org/10.4218/etrij.2017-0166
  24. C.-M. Chang and H.-P. D. Shieh, Design of illumination and projection optics for projectors with single digital micromirror devices, Appl. Opt. 39 (2000), no. 22, 3202-3208. https://doi.org/10.1364/AO.39.003202
  25. J.-W. Pan et al., Portable digital micromirror device projector using a prism, Appl. Opt. 46 (2007), no. 22, 5097-5102. https://doi.org/10.1364/AO.46.005097
  26. J. W. Goodman, Some fundamental properties of speckle, J. Opt. Soc. Am. 66 (1976), no. 11, 1145-1150. https://doi.org/10.1364/JOSA.66.001145
  27. D.A. Boas and A. K. Dunn, Laser Speckle Contrast Imaging in Biomedical Optics, J. Biomed. Opt. 15 (2010), no. 1, 011109:1-011109:12.

Cited by

  1. Electronic Tabletop Holographic Display: Design, Implementation, and Evaluation vol.9, pp.4, 2019, https://doi.org/10.3390/app9040705
  2. Quality enhancement of binary-encoded amplitude holograms by using error diffusion vol.28, pp.25, 2019, https://doi.org/10.1364/oe.411312