DOI QR코드

DOI QR Code

한계 없는 무선통신 실현을 위한 기술 동향

Research Trends on Limitless Connections in Wireless Transmission and Access Technologies

  • 발행 : 2019.02.01

초록

The capacity of wireless communications has been considered to be restricted by their fundamental limits, which were first formulated by Shannon in 1948. These limits are for the communication environment that is composed of a transmitter and receiver pair. However, there are usually more than one simultaneously communicating pairs in the environment. In such cases, the capacity is not known. Moreover, performance requirements have been diversified with the development of technology. We believe that wireless communication technologies will eventually progress toward limitless connections. Various wireless transmission and access technologies are introduced in order to overcome their limitations.

키워드

HJTOCM_2019_v34n1_61_f0001.png 이미지

(그림 1) 직교 와 비-직교 다중화 방식의 time 및 frequency 자원 분배 방식 차이

HJTOCM_2019_v34n1_61_f0002.png 이미지

(그림 2) 비-직교 다중화 방식의 신호 검출을 위한 반복적 간섭 제거 방식 block diagram

<표 1> IEEE 802.15.3d의 주요 규격

HJTOCM_2019_v34n1_61_t0001.png 이미지

참고문헌

  1. C.E. Shannon, "A Mathematical Theory of Communication," Bell Syst. Techn. J., vol. 27, no. 3, July 1948, pp. 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  2. T.M. Cover and J. Wiley, Elements of Information Theory, 2nd Edition, Wiley Online Library, 2006.
  3. C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes. 1," Proc. ICC-IEEE Int. Conf. Commun., Geneva, Switzerland, 1993, pp. 1064-1070.
  4. S.Y. Chung et al., "On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit," IEEE Commun. Lett., vol. 5, no. 2, 2001, pp. 58-60. https://doi.org/10.1109/4234.905935
  5. E. Arikan, "Channel Polarization: A Method for Constructing Capacity Achieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Trans. Inform. Theory, vol. 55, no. 7, July 2009, pp. 3051-3073. https://doi.org/10.1109/TIT.2009.2021379
  6. E. Telatar. "Capacity of Multi-Antenna Gaussian Channels," Trans. Telecommun. Technol., vol. 10, no. 6, 1999, pp. 585-595. https://doi.org/10.1002/ett.4460100604
  7. L. Zheng and D.N.C. Tse, "Diversity and Multiplexing: a Fundamental Tradeoff in Multiple-Antenna Channels," IEEE Trans. Inform. Theory, vol. 49, no. 5, May 2003, pp. 1073-1096. https://doi.org/10.1109/TIT.2003.810646
  8. A. El Gamal and Y.-H. Kim, Network Information Theory, Cambridge University Press: New York, USA, 2012.
  9. H. Weingarten, Y. Steinberg, and S. S. Shamai, "The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel," IEEE Trans. Inform. Theory, vol. 52, no. 9, 2006, pp. 3936-3964. https://doi.org/10.1109/TIT.2006.880064
  10. R.H. Etkin, D.N.C. Tse, and H. Wang, "Gaussian Interference Channel Capacity to Within One Bit," IEEE Trans. Inform. Theory, vol. 54, no. 12, Dec. 2008, pp. 5534-5562. https://doi.org/10.1109/TIT.2008.2006447
  11. V.R. Cadambe and S.A. Jafar, "Interference Alignment and Degrees of Freedom of the K-User Interference Channel," IEEE Trans. Inform. Theory, vol. 54, no. 8, Aug. 2008, pp. 3425-3441. https://doi.org/10.1109/TIT.2008.926344
  12. M. Tonouchi, "Cutting-Edge Terahertz Technology", Nature Photon., vol. 1, no. 97, 2007, pp. 97-105. https://doi.org/10.1038/nphoton.2007.3
  13. P.U. Jepsen, D.G. Cooke, and M. Koch, "Terahertz Spectroscopy and Imaging-Modern Techniques and Applications," Laser Photon.,Rev., vol. 5, no. 1, 2011, pp. 124-166. https://doi.org/10.1002/lpor.201000011
  14. IEEE 802.15 TG3d 14/0304r16, "Applications Requirements Document," May 2015.
  15. 3GPP TR 38.900, "Study on Channel Model for Frequency Spectrum above 6 GHz, V14.3.1," 2017.
  16. IEEE Std 802.15.3d, "Amendment 2: 100 Gb/s Wireless Switched Point-to-Point Physical Layer," 2017
  17. TERAPOD, available at https://terapod-project.eu/.
  18. TRRANOVA, available at https://ict-terranova.eu/.
  19. R. Piesiewicz et al., "Towards Short-Range Terahertz Communication Systems: Basic Considerations," Int. Conf. Appl. Electromagn. Commun., Dubrovnik, Croatia, Oct. 12-14, pp. 1-5.
  20. H. Hamada et al.," 300-GHz, 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer," IEEE/MTT-S Int. Microw. Symp., Philadelphia, PA, USA, June 2018, pp. 1480-1483.
  21. P.Rodriguez-Vazquez et al., "A 65 Gbps QPSK One Meter Wireless Link Operating at a 225-255GHz Tunable Carrier in a SiGe HBT Technology," IEEE Radio Wireless Symp., Anaheim, CA, USA, Jan. 2018, pp. 146-149
  22. L. Breslau et al., "Web Caching and Zipf-Like Distributions: Evidence and Implications," Proc. IEEE INFOCOM, New York, USA, Mar. 1999, pp. 126-134.
  23. C. Yang et al., "Analysis on Cache-Enabled Wireless Heterogeneous Networks," IEEE Trans. Wireless Commun., vol. 15, no. 1, Jan. 2016, pp. 131-145. https://doi.org/10.1109/TWC.2015.2468220
  24. N. Golrezaei et al., "FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers," Proc. IEEE INFOCOM, Orlando, FL, USA, 2012, pp. 1107-1115.
  25. N. Golrezaei et al., "Base-Station Assisted Device-to-Device Communications for High-Throughput Wireless Video Networks," IEEE Trans. Wireless Commun., vol. 13, no. 7, July 2014, pp. 3665-3676. https://doi.org/10.1109/TWC.2014.2316817
  26. M.A. Maddah-Ali and U. Niesen, "Fundamental Limits of Caching," IEEE Trans. Inform. Theory, vol. 60, no. 5, May 2014, pp. 2856-2867. https://doi.org/10.1109/TIT.2014.2306938
  27. M. Ji, G. Caire and A.F. Molisch, "Fundamental Limits of Caching in Wireless D2D Networks," IEEE Trans. Inform. Theory, vol. 62, no. 2, Feb. 2016, pp. 849-869. https://doi.org/10.1109/TIT.2015.2504556
  28. K. Zhu et al., "Social-Aware Incentivized Caching for D2D Communications," IEEE Access, vol. 4, Nov. 2016, pp. 7685-7593.
  29. J. Li et al., "On Social-Aware Content Caching for D2D-Enabled Cellular Networks with Matching Theory," accepted to IEEE Internet Things J., 2018.
  30. B. Bai et al., "Caching Based Socially-Aware D2D Communications in Wireless Content Delivery Networks: A Hypergraph Framework," IEEE Wireless Commun., vol. 23, no. 4, Aug. 2016, pp. 74-81. https://doi.org/10.1109/MWC.2016.7553029
  31. Z. Chen et al., "Cooperative Caching and Transmission Design in Cluster-Centric Small Cell Networks," IEEE Trans.Wireless Commun., vol. 16, no. 5, May 2017, pp. 3401-3415. https://doi.org/10.1109/TWC.2017.2682240
  32. Z. Ding et al., "NOMA Assisted Wireless Caching: Strategies and Performance Analysis," IEEE Trans. Commun., vol. 66, no. 10, Oct. 2018, pp. 4854-4876. https://doi.org/10.1109/TCOMM.2018.2841929
  33. 3GPP TS 36.211 v15.3.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation," Jan. 2019.
  34. 3GPP TS 38.211 v15.4.0, "NR; Physical channels and modulation, " Jan. 2019.
  35. Z. Zhao et al., "Pulse shaped OFDM for Asynchronous Uplink Access," Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 2015, pp. 3-7.
  36. B. Farhang-Boroujeny, "OFDM Versus Filter Bank Multicarrier," IEEE Sig. Proc. Mag., vol. 28, no. 3, May 2011, pp. 92-112. https://doi.org/10.1109/MSP.2011.940267
  37. Qualcomm Inc., "Waveform candidates," 3GPP TSG-RAN WG1 #84b, R1-162199, Apr. 2016.
  38. J. Abdoli, M. Ja, and J. Ma, "Filtered OFDM: A New Waveform for Future Wireless Systems," Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun., Stockhlom, Sweden, June 2015, pp. 66-70.
  39. V. Vakilian et al., "Universal-Filtered Multi-Carrier Technique for Wireless Systems Beyond LTE," IEEE Globecom Workshops, Atlanta, GA, USA, Dec. 2013, pp. 223-228.
  40. W. Kozek and A.F. Molisch, "Nonorthogonal Pulseshapes for Multicarrier Communications in Doubly Dispersive Channels," IEEE J. Sel. Areas Commun., vol. 16, no. 8, 1998, pp. 1579-1589. https://doi.org/10.1109/49.730463
  41. R. Hadani et al., "Orthogonal Time Frequency Space Modulation," Proc. IEEE WCNC, San Francisco, CA, USA, Mar. 2017, pp. 1-7.
  42. R. El Hattachi, "A Deliverable by the NGMN Alliance," NGMN 5G Initiative White Paper, Feb. 17, 2015.
  43. Hyperloop One, available at https://hyperloopone.com
  44. R1-162930, "OTFS Modulation Waveform and Reference, Signals for New RAT," 3GPP, Apr. 2016.
  45. Cohere Technologies, "Overview of OTFS Waveform for Next Generation RAT," 3GPP TSG RA WG1 Meeting #84, R1-162929, 2016.
  46. 김근영, 명정호, 서지훈, "딥러닝을 활용한 무선 전송 및 접속 기술 동향," 전자통신동향분석, 제33권 제5호, 2018, pp. 13-23. https://doi.org/10.22648/ETRI.2018.J.330502
  47. T.J. O'Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," IEEE Trans. Cognitive Commun. Netw., vol. 3, no. 4, Dec. 2017, pp. 563-575. https://doi.org/10.1109/TCCN.2017.2758370
  48. E. Nachmani et al., "Deep Learning Methods for Improved Decoding of Linear Codes," IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, 2018, pp. 119-131. https://doi.org/10.1109/JSTSP.2017.2788405