(그림 1) 직교 와 비-직교 다중화 방식의 time 및 frequency 자원 분배 방식 차이
(그림 2) 비-직교 다중화 방식의 신호 검출을 위한 반복적 간섭 제거 방식 block diagram
<표 1> IEEE 802.15.3d의 주요 규격
References
- C.E. Shannon, "A Mathematical Theory of Communication," Bell Syst. Techn. J., vol. 27, no. 3, July 1948, pp. 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- T.M. Cover and J. Wiley, Elements of Information Theory, 2nd Edition, Wiley Online Library, 2006.
- C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes. 1," Proc. ICC-IEEE Int. Conf. Commun., Geneva, Switzerland, 1993, pp. 1064-1070.
- S.Y. Chung et al., "On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit," IEEE Commun. Lett., vol. 5, no. 2, 2001, pp. 58-60. https://doi.org/10.1109/4234.905935
- E. Arikan, "Channel Polarization: A Method for Constructing Capacity Achieving Codes for Symmetric Binary-Input Memoryless Channels," IEEE Trans. Inform. Theory, vol. 55, no. 7, July 2009, pp. 3051-3073. https://doi.org/10.1109/TIT.2009.2021379
- E. Telatar. "Capacity of Multi-Antenna Gaussian Channels," Trans. Telecommun. Technol., vol. 10, no. 6, 1999, pp. 585-595. https://doi.org/10.1002/ett.4460100604
- L. Zheng and D.N.C. Tse, "Diversity and Multiplexing: a Fundamental Tradeoff in Multiple-Antenna Channels," IEEE Trans. Inform. Theory, vol. 49, no. 5, May 2003, pp. 1073-1096. https://doi.org/10.1109/TIT.2003.810646
- A. El Gamal and Y.-H. Kim, Network Information Theory, Cambridge University Press: New York, USA, 2012.
- H. Weingarten, Y. Steinberg, and S. S. Shamai, "The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel," IEEE Trans. Inform. Theory, vol. 52, no. 9, 2006, pp. 3936-3964. https://doi.org/10.1109/TIT.2006.880064
- R.H. Etkin, D.N.C. Tse, and H. Wang, "Gaussian Interference Channel Capacity to Within One Bit," IEEE Trans. Inform. Theory, vol. 54, no. 12, Dec. 2008, pp. 5534-5562. https://doi.org/10.1109/TIT.2008.2006447
- V.R. Cadambe and S.A. Jafar, "Interference Alignment and Degrees of Freedom of the K-User Interference Channel," IEEE Trans. Inform. Theory, vol. 54, no. 8, Aug. 2008, pp. 3425-3441. https://doi.org/10.1109/TIT.2008.926344
- M. Tonouchi, "Cutting-Edge Terahertz Technology", Nature Photon., vol. 1, no. 97, 2007, pp. 97-105. https://doi.org/10.1038/nphoton.2007.3
- P.U. Jepsen, D.G. Cooke, and M. Koch, "Terahertz Spectroscopy and Imaging-Modern Techniques and Applications," Laser Photon.,Rev., vol. 5, no. 1, 2011, pp. 124-166. https://doi.org/10.1002/lpor.201000011
- IEEE 802.15 TG3d 14/0304r16, "Applications Requirements Document," May 2015.
- 3GPP TR 38.900, "Study on Channel Model for Frequency Spectrum above 6 GHz, V14.3.1," 2017.
- IEEE Std 802.15.3d, "Amendment 2: 100 Gb/s Wireless Switched Point-to-Point Physical Layer," 2017
- TERAPOD, available at https://terapod-project.eu/.
- TRRANOVA, available at https://ict-terranova.eu/.
- R. Piesiewicz et al., "Towards Short-Range Terahertz Communication Systems: Basic Considerations," Int. Conf. Appl. Electromagn. Commun., Dubrovnik, Croatia, Oct. 12-14, pp. 1-5.
- H. Hamada et al.," 300-GHz, 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer," IEEE/MTT-S Int. Microw. Symp., Philadelphia, PA, USA, June 2018, pp. 1480-1483.
- P.Rodriguez-Vazquez et al., "A 65 Gbps QPSK One Meter Wireless Link Operating at a 225-255GHz Tunable Carrier in a SiGe HBT Technology," IEEE Radio Wireless Symp., Anaheim, CA, USA, Jan. 2018, pp. 146-149
- L. Breslau et al., "Web Caching and Zipf-Like Distributions: Evidence and Implications," Proc. IEEE INFOCOM, New York, USA, Mar. 1999, pp. 126-134.
- C. Yang et al., "Analysis on Cache-Enabled Wireless Heterogeneous Networks," IEEE Trans. Wireless Commun., vol. 15, no. 1, Jan. 2016, pp. 131-145. https://doi.org/10.1109/TWC.2015.2468220
- N. Golrezaei et al., "FemtoCaching: Wireless Video Content Delivery through Distributed Caching Helpers," Proc. IEEE INFOCOM, Orlando, FL, USA, 2012, pp. 1107-1115.
- N. Golrezaei et al., "Base-Station Assisted Device-to-Device Communications for High-Throughput Wireless Video Networks," IEEE Trans. Wireless Commun., vol. 13, no. 7, July 2014, pp. 3665-3676. https://doi.org/10.1109/TWC.2014.2316817
- M.A. Maddah-Ali and U. Niesen, "Fundamental Limits of Caching," IEEE Trans. Inform. Theory, vol. 60, no. 5, May 2014, pp. 2856-2867. https://doi.org/10.1109/TIT.2014.2306938
- M. Ji, G. Caire and A.F. Molisch, "Fundamental Limits of Caching in Wireless D2D Networks," IEEE Trans. Inform. Theory, vol. 62, no. 2, Feb. 2016, pp. 849-869. https://doi.org/10.1109/TIT.2015.2504556
- K. Zhu et al., "Social-Aware Incentivized Caching for D2D Communications," IEEE Access, vol. 4, Nov. 2016, pp. 7685-7593.
- J. Li et al., "On Social-Aware Content Caching for D2D-Enabled Cellular Networks with Matching Theory," accepted to IEEE Internet Things J., 2018.
- B. Bai et al., "Caching Based Socially-Aware D2D Communications in Wireless Content Delivery Networks: A Hypergraph Framework," IEEE Wireless Commun., vol. 23, no. 4, Aug. 2016, pp. 74-81. https://doi.org/10.1109/MWC.2016.7553029
- Z. Chen et al., "Cooperative Caching and Transmission Design in Cluster-Centric Small Cell Networks," IEEE Trans.Wireless Commun., vol. 16, no. 5, May 2017, pp. 3401-3415. https://doi.org/10.1109/TWC.2017.2682240
- Z. Ding et al., "NOMA Assisted Wireless Caching: Strategies and Performance Analysis," IEEE Trans. Commun., vol. 66, no. 10, Oct. 2018, pp. 4854-4876. https://doi.org/10.1109/TCOMM.2018.2841929
- 3GPP TS 36.211 v15.3.0, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation," Jan. 2019.
- 3GPP TS 38.211 v15.4.0, "NR; Physical channels and modulation, " Jan. 2019.
- Z. Zhao et al., "Pulse shaped OFDM for Asynchronous Uplink Access," Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 2015, pp. 3-7.
- B. Farhang-Boroujeny, "OFDM Versus Filter Bank Multicarrier," IEEE Sig. Proc. Mag., vol. 28, no. 3, May 2011, pp. 92-112. https://doi.org/10.1109/MSP.2011.940267
- Qualcomm Inc., "Waveform candidates," 3GPP TSG-RAN WG1 #84b, R1-162199, Apr. 2016.
- J. Abdoli, M. Ja, and J. Ma, "Filtered OFDM: A New Waveform for Future Wireless Systems," Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun., Stockhlom, Sweden, June 2015, pp. 66-70.
- V. Vakilian et al., "Universal-Filtered Multi-Carrier Technique for Wireless Systems Beyond LTE," IEEE Globecom Workshops, Atlanta, GA, USA, Dec. 2013, pp. 223-228.
- W. Kozek and A.F. Molisch, "Nonorthogonal Pulseshapes for Multicarrier Communications in Doubly Dispersive Channels," IEEE J. Sel. Areas Commun., vol. 16, no. 8, 1998, pp. 1579-1589. https://doi.org/10.1109/49.730463
- R. Hadani et al., "Orthogonal Time Frequency Space Modulation," Proc. IEEE WCNC, San Francisco, CA, USA, Mar. 2017, pp. 1-7.
- R. El Hattachi, "A Deliverable by the NGMN Alliance," NGMN 5G Initiative White Paper, Feb. 17, 2015.
- Hyperloop One, available at https://hyperloopone.com
- R1-162930, "OTFS Modulation Waveform and Reference, Signals for New RAT," 3GPP, Apr. 2016.
- Cohere Technologies, "Overview of OTFS Waveform for Next Generation RAT," 3GPP TSG RA WG1 Meeting #84, R1-162929, 2016.
- 김근영, 명정호, 서지훈, "딥러닝을 활용한 무선 전송 및 접속 기술 동향," 전자통신동향분석, 제33권 제5호, 2018, pp. 13-23. https://doi.org/10.22648/ETRI.2018.J.330502
- T.J. O'Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," IEEE Trans. Cognitive Commun. Netw., vol. 3, no. 4, Dec. 2017, pp. 563-575. https://doi.org/10.1109/TCCN.2017.2758370
- E. Nachmani et al., "Deep Learning Methods for Improved Decoding of Linear Codes," IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, 2018, pp. 119-131. https://doi.org/10.1109/JSTSP.2017.2788405