DOI QR코드

DOI QR Code

A Study on Clinical Decision Support System based on Common Data Model

공통데이터모델 기반의 임상의사결정지원시스템에 관한 연구

  • Ahn, Yoon-Ae (Dept. of Medical IT Engineering, Korea National University of Transportation) ;
  • Cho, Han-Jin (Dept. of Energy IT Engineering, Far East University)
  • 안윤애 (한국교통대학교 의료IT공학전공) ;
  • 조한진 (극동대학교 에너지IT공학과)
  • Received : 2019.10.11
  • Accepted : 2019.11.20
  • Published : 2019.11.28

Abstract

Recently, medical IT solutions are being provided on a distributed environment basis. In Korea, the necessity of developing a clinical decision support system that can share medical information in a distributed environment has been recognized and studied. The existing clinical decision support system is being built using only medical information of its own within the hospital. This makes it difficult for existing systems to achieve good results in terms of efficiency and accuracy of decision support. In order to solve these limitations, this paper proposes a design and implementation method of clinical decision support system based on common data model in medical field. To explain the application process of the proposed model, we describe the development scenario of the clinical decision support system for the diagnosis of colorectal cancer. We also propose the essential requirements for the development of successful clinical decision support systems. Through this, it is expected that it will be possible to develop clinical decision support system that can be used in various hospitals and improve the efficiency and accuracy of the system.

최근 의료IT 분야 솔루션들이 분산 환경 기반으로 제공되고 있는 추세이다. 국내에서도 분산 환경에서 의료정보를 공유할 수 있는 임상의사결정지원시스템 개발의 필요성이 인식되어 연구되고 있다. 기존 임상의사결정지원시스템은 병원 내의 자체적인 의료정보만을 사용하여 구축되고 있다. 이로 인해 기존의 시스템은 의사결정지원의 효율성 및 정확성 측면에서 좋은 결과를 얻기 어렵다. 이러한 한계점을 해결하기 위해 이 논문에서는 의료분야의 공통 데이터 모델을 기반으로 하는 임상의사결정지원시스템 모델을 설계하고 구축방안을 제시한다. 제안 모델의 적용 과정을 설명하기 위해 대장암 진단을 위한 임상의사결정지원시스템의 개발 시나리오를 기술한다. 또한 성공적인 임상의사결정지원시스템 개발을 위한 필수 요구사항을 제시한다. 이를 통해 여러 병원에서 공통으로 사용이 가능하고 시스템의 효율성과 정확성을 높일 수 있는 임상의사결정지원시스템 개발이 가능할 것으로 기대한다.

Keywords

References

  1. M. Khalifa. (2014). Clinical Decision Support: Strategies for Success. International Workshop on Intelligent Technologies for HealthCare(ITCare-14), Journal of Procedia Computer Science, 37, 422-427. DOI : 10.1016/j.procs.2014.08.063
  2. Y. A. Ahn & H. J. Cho. (2017). Hospital System Model for Personalized Medical Service. Journal of the Korea Convergence Society, 8(12), 77-84 DOI : 10.15207/JKCS.2017.8.12.077
  3. D. H. Lee et al. (2016). Clinical Decision Support System (CDSS) Technology Trend. Electronic Communication Trend Analysis, 31(4), 77-85. DOI : 10.22648/ETRI.2016.J.310408
  4. W. S. Hwang. (2017.07.25). Ministry of Food and Drug Safety Analyzes Drug Side Effects with Big Data. Education and Health Newspaper [Online]. http://www.edunhealth.com/news/view.php?idx=607
  5. Y. K. Kim. (2018). Recent Trends and Implications of Digital Healthcare. Information and Communications Planning and Evaluation Institute, Weekly ICT Trends, 1846, 12-23, IITP [Online]. www.iitp.kr
  6. Neogen Soft. (2017). Artificial Intelligence (AI) Technology in Healthcare. Healthcare Tech [Online]. neozensoft.blog.me/221124735041?Redirect=Log&from=postView
  7. S. P. Bartold & G. G. Hannigan. (2002). DXplain. Journal of the Medical Library Association, 90(2), 267-268.
  8. K. J. Skhal & J. Koffel. (2007). VisualDX. Journal of the Medical Library Association, 95(4), 470-471. DOI : 10.3163/1536-5050.95.4.470
  9. S. H. Lee. (2018). Common Data Model for Medical Big Data Analytics. Information and Communications Planning and Evaluation Institute, Weekly ICT Trends, 1878, 14-24.
  10. H. J. Kim, J. S. Shim, S. J. Woo & S. I. Park. (2018). Revealing the sketch of future new industry through 30 key technologies. New Industry Technology Roadmap Press Release, Ministry of Trade, Industry and Energy [Online]. http://www.motie.go.kr/
  11. S. H. Doo, C. Y. Jung & J. M. Bae. (2015). Development of an Arden Syntax Translator for Building a Clinical Decision Support System with XML, Journal of The Korea Society of Computer and Information, 20(11), 119-126. DOI : 10.9708/jksci.2015.20.11.119
  12. T. Ali, S. Y. Lee, S. M. Kang, J. H. Bang & M. B. Amin. (2018). Intelligent Medical Platform for Clinical decision making. Proceedings of the 15th APAN Research Workshop, (pp. 2-7), Auckland New Zealand: APAN.
  13. H. P. Young et al. (2018). Validation of a Common Data Model for Clinical Research and Post-Market Surveillance. Yale School of Medicine Dean's Workshop: Inauguration of the Yale Center for Biomedical Data Science, USA.
  14. E. Maserat, S. S. Farajollah, R. Safdari1, M. Ghazisaeedi, H. A. Aghdaei & M. R. Zali. (2015). Information Engineering and Workflow Design in a Clinical Decision Support System for Colorectal Cancer Screening in Iran. Asian Pacific Journal of Cancer Prevention, 16(15), 6605-6608. DOI : 10.7314/APJCP.2015.16.15.6605
  15. Y. C. Jeong. (2017.01.17). Medical Information Sharing CDM. ETNEWS [Online]. http://www.etnews.com/20170117000270?m=1
  16. J. H. Yoo. (2016). A Study on Implementation of System Improvement for Medical Information Processing. Journal of Digital Convergence, 14(11), 283-288. DOI : 10.14400/JDC.2016.14.11.283