DOI QR코드

DOI QR Code

ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL

  • Cho, Yonggeun (Department of Mathematics and Institute of Pure and Applied Mathematics Chonbuk National University) ;
  • Lee, Misung (Department of Mathematics Chonbuk National University)
  • Received : 2019.01.08
  • Accepted : 2019.04.12
  • Published : 2019.11.30

Abstract

We show the existence of ground state and orbital stability of standing waves of nonlinear $Schr{\ddot{o}}dinger$ equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in $H^1$. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.

Keywords

References

  1. A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in $R^N$, Rev. Mat. Iberoamericana 6 (1990), no. 1-2, 1-15. https://doi.org/10.4171/RMI/92
  2. J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrodinger equations with inhomogeneous nonlinearities, Discrete Contin. Dyn. Syst. Ser. B 9 (2008), no. 2, 221- 233. https://doi.org/10.3934/dcdsb.2008.9.221
  3. T. Cazenave, Semilinear Schrodinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003. https://doi.org/10.1090/cln/010
  4. Y. Cho, H. Hajaiej, G. Hwang, and T. Ozawa, On the orbital stability of fractional Schrodinger equations, Commun. Pure Appl. Anal. 13 (2014), no. 3, 1267-1282. https: //doi.org/10.3934/cpaa.2014.13.1267
  5. V. D. Dinh, Scattering theory in a weighted $L^2$ space for a class of the defocusing inhomogeneous nonlinear Schrodinger equation, in preprint (arXiv:1710.01392)
  6. L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation, J. Evol. Equ. 16 (2016), no. 1, 193-208. https://doi.org/10.1007/s00028-015-0298-y
  7. L. G. Farah and C. M. Guzman, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrodinger equation, J. Differential Equations 262 (2017), no. 8, 4175-4231. https://doi.org/10.1016/j.jde.2017.01.013
  8. R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities, J. Math. Kyoto Univ. 45 (2005), no. 1, 145-158. https://doi.org/10.1215/kjm/1250282971
  9. F. Genoud, An inhomogeneous, $L^2$-critical, nonlinear Schrodinger equation, Z. Anal. Anwend. 31 (2012), no. 3, 283-290. https://doi.org/10.4171/ZAA/1460
  10. F. Genoud and C. A. Stuart, Schrodinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst. 21 (2008), no. 1, 137-186. https://doi.org/10.3934/dcds.2008.21.137
  11. T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana J. Phys. 55 (2000), 842-845.
  12. C. M. Guzman, On well posedness for the inhomogeneous nonlinear Schrodinger equation, Nonlinear Anal. Real World Appl. 37 (2017), 249-286. https://doi.org/10.1016/j.nonrwa.2017.02.018
  13. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955-980. https://doi.org/10.1353/ajm.1998.0039
  14. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), no. 2, 109-145. https://doi.org/10.1016/S0294-1449(16)30428-0
  15. C. S. Liu and V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasma 1 (9) (1994), 3100-3103. https://doi.org/10.1063/1.870501
  16. T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrodinger equations, Calc. Var. Partial Differential Equations 25 (2006), no. 3, 403-408. https://doi.org/10.1007/s00526-005-0349-2
  17. C. Sulem and P.-L. Sulem, The nonlinear Schrodinger Equation, Applied Mathematical Sciences, 139, Springer-Verlag, New York, 1999.
  18. X.-Y. Tang and P. K. Shukla, Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrodinger equation with an external potential, Physical Review A 76 (2007), 013612-1-10.