DOI QR코드

DOI QR Code

ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease

  • Jeong, Woojin (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Lee, Hyein (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Cho, Sukhee (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Seo, Jinsoo (Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
  • 투고 : 2019.09.03
  • 심사 : 2019.10.20
  • 발행 : 2019.11.30

초록

Significant knowledge about the pathophysiology of Alzheimer's disease (AD) has been gained in the last century; however, the understanding of its causes of onset remains limited. Late-onset AD is observed in about 95% of patients, and APOE4-encoding apolipoprotein E4 (ApoE4) is strongly associated with these cases. As an apolipoprotein, the function of ApoE in brain cholesterol transport has been extensively studied and widely appreciated. Development of new technologies such as human-induced pluripotent stem cells (hiPSCs) and CRISPR-Cas9 genome editing tools have enabled us to develop human brain model systems in vitro and readily manipulate genomic information. In the context of these advances, recent studies provide strong evidence that abnormal cholesterol metabolism by ApoE4 could be linked to AD-associated pathology. In this review, we discuss novel discoveries in brain cholesterol dysregulation by ApoE4. We further elaborate cell type-specific roles in cholesterol regulation of four major brain cell types, neurons, astrocytes, microglia, and oligodendrocytes, and how its dysregulation can be linked to AD pathology.

키워드

참고문헌

  1. Abud, E.M., Ramirez, R.N., Martinez, E.S., Healy, L.M., Nguyen, C.H.H., Newman, S.A., Yeromin, A.V., Scarfone, V.M., Marsh, S.E., Fimbres, C., et al. (2017). iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278-293.e9. https://doi.org/10.1016/j.neuron.2017.03.042
  2. Baik, S.H., Kang, S., Lee, W., Choi, H., Chung, S., Kim, J.I., and Mook-Jung, I. (2019). A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer's disease. Cell Metab. 30, 493-507.e6. https://doi.org/10.1016/j.cmet.2019.06.005
  3. Bales, K.R., Verina, T., Dodel, R.C., Du, Y., Altstiel, L., Bender, M., Hyslop, P., Johnstone, E.M., Little, S.P., Cummins, D.J., et al. (1997). Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. 17, 263-264. https://doi.org/10.1038/ng1197-263
  4. Bell, R.D., Winkler, E.A., Singh, I., Sagare, A.P., Deane, R., Wu, Z., Holtzman, D.M., Betsholtz, C., Armulik, A., Sallstrom, J., et al. (2012). Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512-516. https://doi.org/10.1038/nature11087
  5. Benarroch, E.E. (2008). Brain cholesterol metabolism and neurologic disease. Neurology 71, 1368-1373. https://doi.org/10.1212/01.wnl.0000333215.93440.36
  6. Bernardo, A. and Minghetti, L. (2006). PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr. Pharm. Des. 12, 93-109. https://doi.org/10.2174/138161206780574579
  7. Camargo, N., Goudriaan, A., van Deijk, A.L.F., Otte, W.M., Brouwers, J.F., Lodder, H., Gutmann, D.H., Nave, K.A., Dijkhuizen, R.M., Mansvelder, H.D., et al. (2017). Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol. 15, e1002605. https://doi.org/10.1371/journal.pbio.1002605
  8. Canter, R.G., Penney, J., and Tsai, L.H. (2016). The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 539, 187-196. https://doi.org/10.1038/nature20412
  9. Cantuti-Castelvetri, L., Fitzner, D., Bosch-Queralt, M., Weil, M.T., Su, M., Sen, P., Ruhwedel, T., Mitkovski, M., Trendelenburg, G., Lutjohann, D., et al. (2018). Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359, 684-688. https://doi.org/10.1126/science.aan4183
  10. Casey, C.S., Atagi, Y., Yamazaki, Y., Shinohara, M., Tachibana, M., Fu, Y., Bu, G., and Kanekiyo, T. (2015). Apolipoprotein E inhibits cerebrovascular pericyte mobility through a RhoA protein-mediated pathway. J. Biol. Chem. 290, 14208-14217. https://doi.org/10.1074/jbc.M114.625251
  11. Cheng-Hathaway, P.J., Reed-Geaghan, E.G., Jay, T.R., Casali, B.T., Bemiller, S.M., Puntambekar, S.S., von Saucken, V.E., Williams, R.Y., Karlo, J.C., Moutinho, M., et al. (2018). The Trem2 R47H variant confers loss-offunction-like phenotypes in Alzheimer's disease. Mol. Neurodegener. 13, 29. https://doi.org/10.1186/s13024-018-0262-8
  12. Chrast, R., Saher, G., Nave, K.A., and Verheijen, M.H.G. (2011). Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models. J. Lipid Res. 52, 419-434. https://doi.org/10.1194/jlr.R009761
  13. Chu, C.S., Tseng, P.T., Stubbs, B., Chen, T.Y., Tang, C.H., Li, D.J., Yang, W.C., Chen, Y.W., Wu, C.K., Veronese, N., et al. (2018). Use of statins and the risk of dementia and mild cognitive impairment: a systematic review and meta-analysis. Sci. Rep. 8, 5804. https://doi.org/10.1038/s41598-018-24248-8
  14. Chung, W.S., Verghese, P.B., Chakraborty, C., Joung, J., Hyman, B.T., Ulrich, J.D., Holtzman, D.M., and Barres, B.A. (2016). Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc. Natl. Acad. Sci. U. S. A. 113, 10186-10191. https://doi.org/10.1073/pnas.1609896113
  15. Churchward, M.A. and Todd, K.G. (2014). Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Mol. Brain 7, 85. https://doi.org/10.1186/s13041-014-0085-7
  16. Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923. https://doi.org/10.1126/science.8346443
  17. Cossec, J.C., Simon, A., Marquer, C., Moldrich, R.X., Leterrier, C., Rossier, J., Duyckaerts, C., Lenkei, Z., and Potier, M.C. (2010). Clathrin-dependent APP endocytosis and $A{\beta}$ secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim. Biophys. Acta 1801, 846-852. https://doi.org/10.1016/j.bbalip.2010.05.010
  18. Courtney, R. and Landreth, G.E. (2016). LXR regulation of brain cholesterol: from development to disease. Trends Endocrinol. Metab. 27, 404-414. https://doi.org/10.1016/j.tem.2016.03.018
  19. De Strooper, B. and Karran, E. (2016). The cellular phase of Alzheimer's disease. Cell 164, 603-615. https://doi.org/10.1016/j.cell.2015.12.056
  20. Dean, D.C., Hurley, S.A., Kecskemeti, S.R., O'Grady, J.P., Canda, C., Davenport-Sis, N.J., Carlsson, C.M., Zetterberg, H., Blennow, K., Asthana, S., et al. (2017). Association of amyloid pathology with myelin alteration in preclinical Alzheimer disease. JAMA Neurol. 74, 41-49. https://doi.org/10.1001/jamaneurol.2016.3232
  21. Deczkowska, A., Keren-Shaul, H., Weiner, A., Colonna, M., Schwartz, M., and Amit, I. (2018). Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173, 1073-1081. https://doi.org/10.1016/j.cell.2018.05.003
  22. Di Paolo, G. and Kim, T.W. (2011). Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat. Rev. Neurosci. 12, 284-296. https://doi.org/10.1038/nrn3012
  23. Djelti, F., Braudeau, J., Hudry, E., Dhenain, M., Varin, J., Bieche, I., Marquer, C., Chali, F., Ayciriex, S., Auzeil, N., et al. (2015). CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer's disease. Brain 138, 2383-2398. https://doi.org/10.1093/brain/awv166
  24. Domingues, H.S., Portugal, C.C., Socodato, R., and Relvas, J.B. (2016). Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front. Cell Dev. Biol. 4, 71.
  25. Fassbender, K., Simons, M., Bergmann, C., Stroick, M., Lutjohann, D., Keller, P., Runz, H., Kuhl, S., Bertsch, T., von Bergmann, K., et al. (2001). Simvastatin strongly reduces levels of Alzheimer's disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 98, 5856-5861. https://doi.org/10.1073/pnas.081620098
  26. Ferris, H.A., Perry, R.J., Moreira, G.V., Shulman, G.I., Horton, J.D., and Kahn, C.R. (2017). Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc. Natl. Acad. Sci. U. S. A. 114, 1189-1194. https://doi.org/10.1073/pnas.1620506114
  27. Fukui, K., Ferris, H.A., and Kahn, C.R. (2015). Effect of cholesterol reduction on receptor signaling in neurons. J. Biol. Chem. 290, 26383-26392. https://doi.org/10.1074/jbc.M115.664367
  28. Hatters, D.M., Peters-Libeu, C.A., and Weisgraber, K.H. (2006). Apolipoprotein E structure: insights into function. Trends Biochem. Sci. 31, 445-454. https://doi.org/10.1016/j.tibs.2006.06.008
  29. Holtman, I.R., Skola, D., and Glass, C.K. (2017). Transcriptional control of microglia phenotypes in health and disease. J. Clin. Invest. 127, 3220-3229. https://doi.org/10.1172/JCI90604
  30. Holtzman, D.M., Bales, K.R., Wu, S., Bhat, P., Parsadanian, M., Fagan, A.M., Chang, L.K., Sun, Y., and Paul, S.M. (1999). Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer's disease. J. Clin. Invest. 103, R15-R21. https://doi.org/10.1172/JCI6179
  31. Holtzman, D.M., Fagan, A.M., Mackey, B., Tenkova, T., Sartorius, L., Paul, S.M., Bales, K., Ashe, K.H., Irizarry, M.C., and Hyman, B.T. (2000). Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model. Ann. Neurol. 47, 739-747. https://doi.org/10.1002/1531-8249(200006)47:6<739::AID-ANA6>3.0.CO;2-8
  32. Holtzman, D.M., Herz, J., and Bu, G. (2012). Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006312. https://doi.org/10.1101/cshperspect.a006312
  33. Huang, Y.W.A., Zhou, B., Wernig, M., and Sudhof, T.C. (2017). ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and $A{\beta}$ secretion. Cell 168, 427-441.e21. https://doi.org/10.1016/j.cell.2016.12.044
  34. Ingolfsson, H.I., Carpenter, T.S., Bhatia, H., Bremer, P.T., Marrink, S.J., and Lightstone, F.C. (2017). Computational lipidomics of the neuronal plasma membrane. Biophys. J. 113, 2271-2280. https://doi.org/10.1016/j.bpj.2017.10.017
  35. Jiang, X., Guo, M., Su, J., Lu, B., Ma, D., Zhang, R., Yang, L., Wang, Q., Ma, Y., and Fan, Y. (2012). Simvastatin blocks blood-brain barrier disruptions induced by elevated cholesterol both in vivo and in vitro. Int. J. Alzheimers Dis. 2012, 109324-109327.
  36. Kalayci, R., Kaya, M., Uzun, H., Bilgic, B., Ahishali, B., Arican, N., Elmas, I., and Kucuk, M. (2009). Influence of hypercholesterolemia and hypertension on the integrity of the blood-brain barrier in rats. Int. J. Neurosci. 119, 1881-1904. https://doi.org/10.1080/14647270802336650
  37. Kalvodova, L., Kahya, N., Schwille, P., Ehehalt, R., Verkade, P., Drechsel, D., and Simons, K. (2005). Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J. Biol. Chem. 280, 36815-36823. https://doi.org/10.1074/jbc.M504484200
  38. Karch, C.M. and Goate, A.M. (2015). Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 77, 43-51. https://doi.org/10.1016/j.biopsych.2014.05.006
  39. Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., et al. (2017). A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169, 1276-1290.e17. https://doi.org/10.1016/j.cell.2017.05.018
  40. Kim, J., Jiang, H., Park, S., Eltorai, A.E.M., Stewart, F.R., Yoon, H., Basak, J.M., Finn, M.B., and Holtzman, D.M. (2011). Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-${\beta}$ amyloidosis. J. Neurosci. 31, 18007-18012. https://doi.org/10.1523/JNEUROSCI.3773-11.2011
  41. Kim, J., Yoon, H., Basak, J., and Kim, J. (2014). Apolipoprotein E in synaptic plasticity and Alzheimer's disease: potential cellular and molecular mechanisms. Mol. Cells 37, 767-776. https://doi.org/10.14348/molcells.2014.0248
  42. Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K.R., et al. (2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med. 10, 719-726. https://doi.org/10.1038/nm1058
  43. Koudinov, A.R. and Koudinova, N.V. (2002). Cholesterol's role in synapse formation. Science 295, 2213. https://doi.org/10.1126/science.295.5563.2213a
  44. Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., Beckers, L., O'Loughlin, E., Xu, Y., Fanek, Z., et al. (2017). The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566-581.e9. https://doi.org/10.1016/j.immuni.2017.08.008
  45. Kunkle, B.W., Grenier-Boley, B., Sims, R., Bis, J.C., Damotte, V., Naj, A.C., Boland, A., Vronskaya, M., van der Lee, S.J., Amlie-Wolf, A., et al. (2019). Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates $A{\beta}$, tau, immunity and lipid processing. Nat. Genet. 51, 414-430. https://doi.org/10.1038/s41588-019-0358-2
  46. Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C., DeStafano, A.L., Bis, J.C., Beecham, G.W., Grenier-Boley, B., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452-1458. https://doi.org/10.1038/ng.2802
  47. Lee, C.Y.D., Tse, W., Smith, J.D., and Landreth, G.E. (2012). Apolipoprotein E promotes ${\beta}$-amyloid trafficking and degradation by modulating microglial cholesterol levels. J. Biol. Chem. 287, 2032-2044. https://doi.org/10.1074/jbc.M111.295451
  48. Li, Y., Liu, Q., Sun, J., Wang, J., Liu, X., and Gao, J. (2018). Mitochondrial protective mechanism of simvastatin protects against amyloid ${\beta}$ peptideinduced injury in SH-SY5Y cells. Int. J. Mol. Med. 41, 2997-3005.
  49. Lin, Y.T., Seo, J., Gao, F., Feldman, H.M., Wen, H.L., Penney, J., Cam, H.P., Gjoneska, E., Raja, W.K., Cheng, J., et al. (2018). APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141-1154.e7. https://doi.org/10.1016/j.neuron.2018.05.008
  50. Linetti, A., Fratangeli, A., Taverna, E., Valnegri, P., Francolini, M., Cappello, V., Matteoli, M., Passafaro, M., and Rosa, P. (2010). Cholesterol reduction impairs exocytosis of synaptic vesicles. J. Cell. Sci. 123, 595-605. https://doi.org/10.1242/jcs.060681
  51. Liu, C.C., Liu, C.C., Kanekiyo, T., Xu, H., and Bu, G. (2013). Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106-118. https://doi.org/10.1038/nrneurol.2012.263
  52. Liu, C.C., Zhao, N., Fu, Y., Wang, N., Linares, C., Tsai, C.W., and Bu, G. (2017). ApoE4 accelerates early seeding of amyloid pathology. Neuron 96, 1024-1032.e3. https://doi.org/10.1016/j.neuron.2017.11.013
  53. Marquer, C., Devauges, V., Cossec, J.C., Liot, G., Lecart, S., Saudou, F., Duyckaerts, C., Leveque-Fort, S., and Potier, M.C. (2011). Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J. 25, 1295-1305. https://doi.org/10.1096/fj.10-168633
  54. Marquer, C., Laine, J., Dauphinot, L., Hanbouch, L., Lemercier-Neuillet, C., Pierrot, N., Bossers, K., Le, M., Corlier, F., Benstaali, C., et al. (2014). Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer's disease early phenotypes. Mol. Neurodegener. 9, 60. https://doi.org/10.1186/1750-1326-9-60
  55. Martin-Segura, A., Ahmed, T., Casadome-Perales, A., Palomares-Perez, I., Palomer, E., Kerstens, A., Munck, S., Balschun, D., and Dotti, C.G. (2019). Age-associated cholesterol reduction triggers brain insulin resistance by facilitating ligand-independent receptor activation and pathway desensitization. Aging Cell 18, e12932. https://doi.org/10.1111/acel.12932
  56. Mathys, H., Adaikkan, C., Gao, F., Young, J.Z., Manet, E., Hemberg, M., De Jager, P.L., Ransohoff, R.M., Regev, A., and Tsai, L.H. (2017). Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 21, 366-380. https://doi.org/10.1016/j.celrep.2017.09.039
  57. Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J.Z., Menon, M., He, L., Abdurrob, F., Jiang, X., et al. (2019). Single-cell transcriptomic analysis of Alzheimer's disease. Nature 570, 332-337. https://doi.org/10.1038/s41586-019-1195-2
  58. Muffat, J., Li, Y., Yuan, B., Mitalipova, M., Omer, A., Corcoran, S., Bakiasi, G., Tsai, L.H., Aubourg, P., Ransohoff, R.M., et al. (2016). Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358-1367. https://doi.org/10.1038/nm.4189
  59. Nieweg, K., Schaller, H., and Pfrieger, F.W. (2009). Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J. Neurochem. 109, 125-134. https://doi.org/10.1111/j.1471-4159.2009.05917.x
  60. Nishitsuji, K., Hosono, T., Nakamura, T., Bu, G., and Michikawa, M. (2011). Apolipoprotein E regulates the integrity of tight junctions in an isoformdependent manner in an in vitro blood-brain barrier model. J. Biol. Chem. 286, 17536-17542. https://doi.org/10.1074/jbc.M111.225532
  61. Nuriel, T., Angulo, S.L., Khan, U., Ashok, A., Chen, Q., Figueroa, H.Y., Emrani, S., Liu, L., Herman, M., Barrett, G., et al. (2017). Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer's disease-like pathology. Nat. Commun. 8, 1464. https://doi.org/10.1038/s41467-017-01444-0
  62. O'Brien, R.J. and Wong, P.C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annu. Rev. Neurosci. 34, 185-204. https://doi.org/10.1146/annurev-neuro-061010-113613
  63. Palop, J.J. and Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812-818. https://doi.org/10.1038/nn.2583
  64. Pandya, H., Shen, M.J., Ichikawa, D.M., Sedlock, A.B., Choi, Y., Johnson, K.R., Kim, G., Brown, M.A., Elkahloun, A.G., Maric, D., et al. (2017). Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20, 753-759. https://doi.org/10.1038/nn.4534
  65. Pappolla, M.A., Bryant-Thomas, T.K., Herbert, D., Pacheco, J., Fabra Garcia, M., Manjon, M., Girones, X., Henry, T.L., Matsubara, E., Zambon, D., et al. (2003). Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology 61, 199-205. https://doi.org/10.1212/01.WNL.0000070182.02537.84
  66. Parhizkar, S., Arzberger, T., Brendel, M., Kleinberger, G., Deussing, M., Focke, C., Nuscher, B., Xiong, M., Ghasemigharagoz, A., Katzmarski, N., et al. (2019). Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat. Neurosci. 22, 191-204. https://doi.org/10.1038/s41593-018-0296-9
  67. Park, S.H., Kim, J.H., Choi, K.H., Jang, Y.J., Bae, S.S., Choi, B.T., and Shin, H.K. (2013). Hypercholesterolemia accelerates amyloid ${\beta}$-induced cognitive deficits. Int. J. Mol. Med. 31, 577-582. https://doi.org/10.3892/ijmm.2013.1233
  68. Pfrieger, F.W. and Ungerer, N. (2011). Cholesterol metabolism in neurons and astrocytes. Prog. Lipid Res. 50, 357-371. https://doi.org/10.1016/j.plipres.2011.06.002
  69. Rackova, L. (2013). Cholesterol load of microglia: contribution of membrane architecture changes to neurotoxic power? Arch. Biochem. Biophys. 537, 91-103. https://doi.org/10.1016/j.abb.2013.06.015
  70. Ricote, M., Valledor, A.F., and Glass, C.K. (2004). Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid homeostasis, inflammation, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 230-239. https://doi.org/10.1161/01.ATV.0000103951.67680.B1
  71. Saher, G., Brugger, B., Lappe-Siefke, C., Möbius, W., Tozawa, R.I., Wehr, M.C., Wieland, F., Ishibashi, S., and Nave, K.A. (2005). High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8, 468-475. https://doi.org/10.1038/nn1426
  72. Saijo, K., Crotti, A., and Glass, C.K. (2013). Regulation of microglia activation and deactivation by nuclear receptors. Glia 61, 104-111. https://doi.org/10.1002/glia.22423
  73. Savage, J.C., Jay, T., Goduni, E., Quigley, C., Mariani, M.M., Malm, T., Ransohoff, R.M., Lamb, B.T., and Landreth, G.E. (2015). Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer's disease. J. Neurosci. 35, 6532-6543. https://doi.org/10.1523/JNEUROSCI.4586-14.2015
  74. Selkoe, D.J. and Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8, 595-608. https://doi.org/10.15252/emmm.201606210
  75. Shi, Y., Yamada, K., Liddelow, S.A., Smith, S.T., Zhao, L., Luo, W., Tsai, R.M., Spina, S., Grinberg, L.T., Rojas, J.C., et al. (2017). ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523-527. https://doi.org/10.1038/nature24016
  76. Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C.G., and Simons, K. (1998). Cholesterol depletion inhibits the generation of betaamyloid in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 95, 6460-6464. https://doi.org/10.1073/pnas.95.11.6460
  77. Sinha, S. and Lieberburg, I. (1999). Cellular mechanisms of beta-amyloid production and secretion. Proc. Natl. Acad. Sci. U. S. A. 96, 11049-11053. https://doi.org/10.1073/pnas.96.20.11049
  78. Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S., and Roses, A.D. (1993). Apolipoprotein E: highavidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 90, 1977-1981. https://doi.org/10.1073/pnas.90.5.1977
  79. Tai, L.M., Youmans, K.L., Jungbauer, L., Yu, C., and Ladu, M.J. (2011). Introducing human APOE into $A{\beta}$ transgenic mouse models. Int. J. Alzheimers Dis. 2011, 810981.
  80. TCW, J., Liang, S.A., Qian, L., Pipalia, N.H., Chao, M.J., Shi, Y., Bertelsen, S.E., Kapoor, M., Marcora, E., Sikora, E., et al. (2019). Cholesterol and matrisome pathways dysregulated in human APOE ${\varepsilon}4$ glia. bioRxiv 99, 713362.
  81. Tong, J., Borbat, P.P., Freed, J.H., and Shin, Y.K. (2009). A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol. Proc. Natl. Acad. Sci. U. S. A. 106, 5141-5146. https://doi.org/10.1073/pnas.0813138106
  82. Ulrich, J.D., Ulland, T.K., Mahan, T.E., Nyström, S., Nilsson, K.P., Song, W.M., Zhou, Y., Reinartz, M., Choi, S., Jiang, H., et al. (2018). ApoE facilitates the microglial response to amyloid plaque pathology. J. Exp. Med. 215, 1047-1058. https://doi.org/10.1084/jem.20171265
  83. van Deijk, A.F., Camargo, N., Timmerman, J., Heistek, T., Brouwers, J.F., Mogavero, F., Mansvelder, H.D., Smit, A.B., and Verheijen, M.H. (2017). Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia 65, 670-682. https://doi.org/10.1002/glia.23120
  84. Vance, J.E. (2012). Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis. Model Mech. 5, 746-755. https://doi.org/10.1242/dmm.010124
  85. Voskuhl, R.R., Itoh, N., Tassoni, A., Matsukawa, M.A., Ren, E., Tse, V., Jang, E., Suen, T.T., and Itoh, Y. (2019). Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A. 116, 10130-10139. https://doi.org/10.1073/pnas.1821306116
  86. Wingo, T.S., Cutler, D.J., Wingo, A.P., Le, N.A., Rabinovici, G.D., Miller, B.L., Lah, J.J., and Levey, A.I. (2019). Association of early-onset Alzheimer disease with elevated low-density lipoprotein cholesterol levels and rare genetic coding variants of APOB. JAMA Neurol. 76, 809-817. https://doi.org/10.1001/jamaneurol.2019.0648
  87. Wood, W.G., Li, L., Muller, W.E., and Eckert, G.P. (2014). Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis. J. Neurochem. 129, 559-572. https://doi.org/10.1111/jnc.12637
  88. Wu, L., Zhang, X., and Zhao, L. (2018). Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer's disease risk reduction and early intervention. J. Neurosci. 38, 6665-6681. https://doi.org/10.1523/JNEUROSCI.2262-17.2018
  89. Wu, Y., Ma, Y., Liu, Z., Geng, Q., Chen, Z., and Zhang, Y. (2017). Alterations of myelin morphology and oligodendrocyte development in early stage of Alzheimer's disease mouse model. Neurosci. Lett. 642, 102-106. https://doi.org/10.1016/j.neulet.2017.02.007
  90. Xu, Q., Bernardo, A., Walker, D., Kanegawa, T., Mahley, R.W., and Huang, Y. (2006). Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci. 26, 4985-4994. https://doi.org/10.1523/JNEUROSCI.5476-05.2006
  91. Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O'Keeffe, S., Phatnani, H.P., Guarnieri, P., Caneda, C., Ruderisch, N., et al. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929-11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
  92. Zhang, Y., Sloan, S.A., Clarke, L.E., Caneda, C., Plaza, C.A., Blumenthal, P.D., Vogel, H., Steinberg, G.K., Edwards, M.S.B., Li, G., et al. (2016). Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37-53. https://doi.org/10.1016/j.neuron.2015.11.013

피인용 문헌

  1. Low-Density Lipoprotein Cholesterol and Alzheimer's Disease: A Systematic Review and Meta-Analysis vol.12, 2019, https://doi.org/10.3389/fnagi.2020.00005
  2. Steroids and Alzheimer’s Disease: Changes Associated with Pathology and Therapeutic Potential vol.21, pp.13, 2019, https://doi.org/10.3390/ijms21134812
  3. A Coordinated Approach by Public Domain Bioinformatics Resources to Aid the Fight Against Alzheimer’s Disease Through Expert Curation of Key Protein Targets vol.77, pp.1, 2020, https://doi.org/10.3233/jad-200206
  4. Plasma Lipids as Biomarkers for Alzheimer's Disease: A Systematic Review vol.12, pp.12, 2019, https://doi.org/10.7759/cureus.12008
  5. Insulin resistance: a connecting link between Alzheimer’s disease and metabolic disorder vol.36, pp.1, 2019, https://doi.org/10.1007/s11011-020-00622-2
  6. Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H vol.13, 2021, https://doi.org/10.3389/fnagi.2021.735524
  7. Neurodegenerative Diseases and Cholesterol: Seeing the Field Through the Players vol.13, 2019, https://doi.org/10.3389/fnagi.2021.766587
  8. Could COVID-19 anosmia and olfactory dysfunction trigger an increased risk of future dementia in patients with ApoE4? vol.147, 2021, https://doi.org/10.1016/j.mehy.2020.110479
  9. Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan vol.10, pp.4, 2021, https://doi.org/10.3390/antiox10040572
  10. Plasma lipidome is dysregulated in Alzheimer’s disease and is associated with disease risk genes vol.11, pp.1, 2019, https://doi.org/10.1038/s41398-021-01362-2
  11. High-Fat and Resveratrol Supplemented Diets Modulate Adenosine Receptors in the Cerebral Cortex of C57BL/6J and SAMP8 Mice vol.13, pp.9, 2019, https://doi.org/10.3390/nu13093040
  12. Cholesterol Dysmetabolism in Alzheimer’s Disease: A Starring Role for Astrocytes? vol.10, pp.12, 2021, https://doi.org/10.3390/antiox10121890
  13. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia vol.21, pp.12, 2019, https://doi.org/10.1080/14737175.2021.2003705