DOI QR코드

DOI QR Code

Adsorption of microcystin onto activated carbon: A review

  • Ampiaw, Rita E. (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Yaqub, Muhammad (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Lee, Wontae (Department of Environmental Engineering, Kumoh National Institute of Technology)
  • Received : 2019.04.23
  • Accepted : 2019.08.26
  • Published : 2019.11.25

Abstract

Microcystins (MCs) are toxins produced by cyanobacteria causing a major environmental threat to water resources worldwide. Although several MCs have been reported in previous studies, microcystin-LR (m-LR) has been extensively studied as it is highly toxic. Among the several techniques employed for the removal of this toxin, adsorption with AC has been extensively studied. AC has gained wide attention as an effective adsorbent of m-LR due to its ubiquity, high sorption capacity, cost effectiveness and renewability. In this review, the adsorption of m-LR onto AC was evaluated using the information available in existing scientific literature. The effects of the pore volume and surface chemistry of AC on the adsorption of m-LR considering the structural and chemical properties of ACs were also discussed. Furthermore, we identified the parameters that influence adsorption, including natural organic matter (NOM), pH, and ionic strength during the m-LR adsorption process. The effect of these parameters on MCs adsorption onto AC from previous studied is compiled and highlighted. This review may provide new insights into future activated carbon-m-LR adsorption research, and broaden its application prospects.

Keywords

Acknowledgement

Supported by : National Research Council of Science & Technology (NST)

References

  1. Acero, J., Rodriguez, E. and Meriluoto, J. (2005), "Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins", Water Res., 39, 1628-1638. https://doi: 10.1016/j.watres.2005.01.022.
  2. Albuquerque Junior, E.C., Mendez, M.O.A., Coutinho, A. dos R., and Franco, T.T. (2008), "Removal of cyanobacteria toxins from drinking water by adsorption on activated carbon fibers", Mater. Res. 11, 371-380. https://doi.org/10.1590/S1516-14392008000300023.
  3. Alighardashi, A., Pakan, M., Jamshidi, S. and Shariati, F.P. (2017), "Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment", Membr. Water Treat., 8(6), 517-528. http://dx.doi.org/10.12989/mwt.2017.8.6.517.
  4. Ame, M.V., Galanti, L.N., Menone, M.L., Gerpe, M.S., Moreno, V.J. and Wunderlin, D.A. (2010), "Microcystin-LR, -RR, -YR and -LA in water samples and fishes from a shallow lake in Argentina", Harmful Algae 9, 66-73. https://doi.org/10.1016/j.hal.2009.08.001.
  5. Bjelopavlic, M., Newcombe, G. and Hayes, R. (1999), "Adsorption of NOM onto activated carbon: Effect of surface charge, ionic strength, and pore volume distribution", J. Colloid Interface Sci. 210, 271-280. https://doi.org/10.1006/jcis.1998.5975.
  6. Boehm, H.P., Diehl, E., Heck, W. and Sappok, R. (1964), "Surface Oxides of Carbon", Angew. Chemie Int. Ed. English, 3, 669-677. https://doi.org/10.1002/anie.196406691.
  7. Boehm, H.P. (1994), "Some aspects of the surface chemistry of carbon blacks and other carbons", Carbon 5, 759-769 https://doi.org/10.1016/0008-6223(94)90031-0.
  8. Bouhaddada, R., Nelieu, S., Nasri, H., Delarue, G. and Bouaicha, N. (2016), "High diversity of microcystins in a Microcystis bloom from an Algerian lake", Environ. Pollut., 216, 836-844. https://doi.org/10.1016/j.envpol.2016.06.055.
  9. Brooks, B.W., Lazorchak, J.M., Howard, M.D.A., Johnson, M.V. V., Morton, S.L., Perkins, D.A.K., Reavie, E.D., Scott, G.I., Smith, S.A. and Steevens, J.A. (2016), "Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?", Environ. Toxicol. Chem., 35, 6-13. https://doi.org/10.1002/etc.3220.
  10. Campinas, M. and Rosa, M.J. (2010), "Removal of microcystins by PAC/UF", Sep. Purif. Technol., 71, 114-120. https://doi.org/10.1016/j.seppur.2009.11.010.
  11. Campinas, M. and Rosa, M.J. (2006), "The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC", J. Colloid Interface Sci., 299, 520-529. https://doi.org/10.1016/j.jcis.2006.02.042.
  12. Campinas, M., Viegas, R.M.C. and Rosa, M.J. (2013), "Modelling and understanding the competitive adsorption of microcystins and tannic acid", Water Res., 47, 5690-5699. https://doi.org/10.1016/j.watres.2013.06.048.
  13. Campinas, M.P. (2009), "Removal of cyanobacteria and cyanotoxins from drinking water by powdered activated carbon adsorption/ultrafiltration". https://sapientia.ualg.pt/handle/10400.1/247.
  14. Chen, G., Dussert, B.W. and Suffet, I.H. (1997), "Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water", Water Res., 31, 1155-1163. https://doi.org/10.1016/S0043-1354(96)00362-4.
  15. Chennette, V.A.I. (2017), "Granular activated carbon for the removal of seasonally present Microcystin-LR", M.Sc. Dissertation, University of Waterloo, Ontario, Canada.
  16. Chorus, I. and Bartram, J. (1999), Toxic Cyanobacteria in Water:A Guide to their Public Health Consequences, Monitoring and Management, World Health Organization, Geneva, Switzerland. https://doi.org/10.1201/9781482295061.
  17. Chow, C.W.K., Drikas, M., House, J., Burch, M.D. and Velzeboer, R.M.A. (1999), "The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa", Water Res., 33(15), 3253-3262. https://doi.org/10.1016/S0043-1354 (99)00051-2.
  18. Considine, R., Denoyel, R., Pendleton, P., Schumann, R. and Wong, S.H. (2001), "The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueous solution", Colloids Surfaces A Physicochem. Eng. Asp., 179, 271-280. https://doi.org/10.1016/S0927-7757(00)00647-6.
  19. Cook, D. and Newcombe, G. (2008), "Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon", Environ. Technol. 29, 525-534. https://doi.org/10.1080/09593330801984415.
  20. Cook, D. and Newcombe, G. (2002), Removal of microcystin variants with powdered activated carbon, in: Water Science and Technology: Water Supply, IWA Publishing, 201-207. https://doi.org/10.2166/ws.2002.0170.
  21. De Ridder, D.J., Verliefde, A.R.D., Schoutteten, K., Van Der Linden, B., Heijman, S.G.J., Beurroies, I., Denoyel, R., Amy, G.L. and Van Dijk, J.C. (2013), "Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon", Carbon N. Y. 53, 153-160. https://doi.org/10.1016/j.carbon.2012.10.042.
  22. Dellero, T., Sarmeo, D. and Touzain, P. (1999), "Chemical heat pump using carbon fibers as additive. Part I: enhancement of thermal conduction", Appl. Therm. Eng., 19, 991-1000. https://doi.org/10.1016/S1359-4311(98)00104-5.
  23. Diao, Y., Walawender, W. P. and Fan, L.T. (2002), "Activated carbons prepared from phosphoric acid activation of grain sorghum", Bioresource Technol., 81, 45-52. https://doi.org/10.1016/S0960-8524 (01)00100-6.
  24. Diez-Quijada, L., Puerto, M., Gutierrez-Praena, D., Llana-Ruiz-Cabello, M., Jos, A. and Camean, A.M. (2019), "Microcystin-RR: Occurrence, content in water and food and toxicological studies, A review", Environ. Res. 168, 467-489. https://doi.org/10.1016/j.envres.2018.07.019.
  25. Dixon, M.B., Richard, Y., Ho, L., Chow, C.W.K., O'Neill, B.K. and Newcombe, G. (2011), "A coagulation-powdered activated carbon-ultrafiltration - Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms", J. Hazard. Mater., 186, 1553-1559. https://doi.org/10.1016/j.jhazmat.2010.12.049.
  26. Donati, C., Drikas, M., Hayes, R. and Newcombe, G. (1994), "Microcystin-LR adsorption by powdered activated carbon", Water Res., 28, 1735-1742. https://doi.org/10.1016/0043-1354(94)90245-3.
  27. Douma, M., Ouahid, Y., Campo, F.F. Del, Loudiki, M., Mouhri, K. and Oudra, B. (2010), "Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinkingwater reservoirs (Mansour Eddahbi, Almassira)", Environ. Monit. Assess., 160, 439-450. https://doi.org/10.1007/s10661-008-0708-5.
  28. Drikas, M., Chow, C.W.K., House, J. and Burch, M.D. (2001), "Using coagulation, flocculation, and settling to remove toxic cyanobacteria", J. Am. Water Works Assoc., 93, 100-111. https://doi.org/10.1002/j.1551-8833.2001.tb09130.x.
  29. Drikas, M., Dixon, M. and Morran, J. (2009), "Removal of 2MIB and geosmin using granular activated carbon with and without MIEX pre-treatment", Water Res., 43, 5151-5159. https://doi.org/10.1016/j.watres.2009.08.016.
  30. Dubinin, M.M. (1960), "The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces", Chem. Rev., 60, 235-241. https://doi.org/10.1021/cr60204a006.
  31. Duong, T.T., Le, T.P.Q., Dao, T.S., Pflugmacher, S., Rochelle-Newall, E., Hoang, T.K., Vu, T.N., Ho, C.T. and Dang, D.K. (2013), "Seasonal variation of cyanobacteria and microcystins in the Nui Coc Reservoir, Northern Vietnam", J. Appl. Phycol. 25, 1065-1075. https://doi.org/10.1007/s10811-012-9919-9.
  32. Faassen, E.J. and Lurling, M. (2013), "Occurrence of the microcystins MC-LW and MC-LF in dutch surface waters and their contribution to total microcystin toxicity", Mar. Drugs, 11, 2643-2654. https://doi.org/10.3390/md11072643.
  33. Falconer, I.R., Runnegar, M.T.C., Buckley, T., Huyn, L. and Bradshaw, P. (1989b), "Using activated carbon to remove toxicity from drinking water containing cyanobacterial blooms", J. Am. Water Work. Assoc., 81, 102-106. https://doi.org/10.1002/j.1551-8833.1989.tb03170.x.
  34. Fathalli, A., Ben Rejeb Jenhani, A., Moreira, C., Welker, M., Romdhane, M., Antunes, A. and Vasconcelos, V. (2011), "Molecular and phylogenetic characterization of potentially toxic cyanobacteria in Tunisian freshwaters", Syst. Appl. Microbiol. 34, 303-310. https://doi.org/10.1016/j.syapm.2010.12.003.
  35. Ferranti, P., Fabbrocino, S., Chiaravalle, E., Bruno, M., Basile, A., Serpe, L. and Gallo, P. (2013), "Profiling microcystin contamination in a water reservoir by MALDI-TOF and liquid chromatography coupled to Q/TOF tandem mass spectrometry", Food Res. Int., 54, 1321-1330. https://doi.org/10.1016/j.foodres.2012.12.028.
  36. Faust, S.D. and Aly, O.M. (1987), Adsorption Process for Water Treatment, Stoneham: Butterworths Publishers, United Kingdom.
  37. Gijsbertsen-Abrahamse, A.J, Schmidt, W., Chorus, I. and Heijman, S.G.J. (2006), "Removal of cyanotoxins by ultrafiltration and nano filtration", J. Membr. Sci., 276(1-2), 252-259. https://doi.org/10.1016/j.memsci.2005.09.053.
  38. Graham, J.L., Loftin, K.A., Meyer, M.T. and Ziegler, A.C. (2010), "Cyanotoxin Mixtures and Taste-and-Odor Compounds in Cyanobacterial Blooms from the Midwestern United States", Environ. Sci. Technol., 44, 7361-7368. https://doi.org/10.1021/es1008938.
  39. Greenwald, M.J., Redding, A.M. and Cannon, F.S. (2015), "A rapid kinetic dye test to predict the adsorption of 2-methylisoborneol onto granular activated carbons and to identify the influence of pore volume distributions", Water Res., 68, 784-792. https://doi.org/10.1016/j.watres.2014.10.022.
  40. He, Q., Kang, L., Sun, X., Jia, R., Zhang, Y., Ma, J., Li, H. and Ai, H. (2018), "Spatiotemporal distribution and potential risk assessment of microcystins in the Yulin River, a tributary of the Three Gorges Reservoir, China", J. Hazard. Mater, 347, 184-195. https://doi.org/10.1016/j.jhazmat.2018.01.001.
  41. He, X., Liu, Y.L., Conklin, A., Westrick, J., Weavers, L.K., Dionysiou, D.D., Lenhart, J.J., Mouser, P.J., Szlag, D. and Walker, H.W. (2016b), "Toxic cyanobacteria and drinking water:Impacts, detection, and treatment", Harmful Algae, 54, 174-193. https://doi.org/10.1016/j.hal.2016.01.001.
  42. Hena, S., Ismail, N., Isaam, A.M., Ahmad, A. and Bhawani, S.A. (2014), "Removal of microcystin-LR from aqueous solutions using% burn-off activated carbon of waste wood material", J. Water Supply Res. Technol. Aqua, 63(5), 332-341. https://doi.org/10.2166/aqua.2013.256.
  43. Ho, L., Lambling, P., Bustamante, H., Duker, P. and Newcombe, G. (2011), "Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies", Water Res., 45, 2954-2964. https://doi.org/10.1016/j.watres.2011.03.014.
  44. Ho. L., Onstad, G., Von Gunten, U., Rinck-Pfeiffer, S., Craig, K. and Newcombe, G. (2006), "Differences in the chlorine reactivity of four microcystin analogues", Water Res., 40(6), 1200-1209. https://doi.org/10.1016/j.watres.2006.01.
  45. Hu, X., Ye, J., Zhang, R., Wu, X., Zhang, Y. and Wu, C. (2017), "Detection of free microcystins in the liver and muscle of freshwater fish by liquid chromatography-tandem mass spectrometry", J. Environ. Sci. Heal. B, Pestic. Food Contam. Agric. Wastes, 52, 770-776. https://doi.org/10.1080/03601234.2017.1356670.
  46. Huang, W.J., Cheng, B.L. and Cheng, Y.L. (2007), "Adsorption of microcystin-LR by three types of activated carbon", J. Hazard. Mater., 141, 115-122. https://doi.org/10.1016/j.jhazmat.2006.06.122.
  47. Ingole, P.G., Sawant, S.Y., Ingole, N.P., Pawar, R.R., Bajaj, H C., Singh, K., Cho, M. H. and Lee, H.K. (2016), "Preparation of activated carbon incorporated polysulfone membranes for dye separation", Membr. Water Treat., 7(6), 477-493. http://dx.doi.org/10.12989/mwt.2016.7.6.477.
  48. Jia, J., Chen, Q. and Lauridsen, T.L. (2016), "A systematic investigation into the environmental fate of microcystins and the potential risk: Study in Lake Taihu", Toxins (Basel), 8, 170. https://doi.org/10.3390/toxins8060170.
  49. Juang, R. S., Wu, F.C. and Tseng R.L. (2000), "Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels", J. Colloid Interface Sci., 277, 437-444. https://doi.org/10.1006/jcis.2000.6912.
  50. Julio, M.D.F.D.J. (2011), "Carbon key-properties for microcystin adsorption in drinking water treatment: Structure or surface chemistry?", M.Sc. Dissertation, NOVA University Lisbon, Portugal.
  51. Kaloudis, T., Zervou, S.K., Tsimeli, K., Triantis, T.M., Fotiou, T. and Hiskia, A. (2013), "Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS, Monitoring of Lake Marathonas, a water reservoir of Athens, Greece", J. Hazard. Mater., 263, 105-115. https://doi.org/10.1016/j.jhazmat.2013.07.036.
  52. Kasaoka, S., Sakata, Y. and Tanaka, E.N.R. (1989), "Preparation of activated fibrous carbon from phenolic fabric and its molecularsieve properties", Int. Chem. Eng., 29, 101-114.
  53. Keijola, A.M., Himberg, K., Esala, A.L., Sivonen, K. and Hiis-Virta, L. (1988), "Removal of cyanobacterial toxins in water treatment processes: Laboratory and pilot-scale experiments", Toxic. Assess., 3, 643-656. https://doi.org/10.1002/tox.2540030516.
  54. Khaleel, M.R., Ahsan, A., Imteaz, M., El-Sergany, M.M., Nik Daud, N.N., Mohamed, T. A. and Ibrahim, B.A. (2015), "Performance of GACC and GACP to treat institutional wastewater: A sustainable technique", Membr. Water Treat., 6(4), 339-349. http://dx.doi.org/10.12989/mwt.2015.6.4.339.
  55. Kilduff, J.E., Karanfil, T., Chin, Y.P. and Weber, W.J. (1996), "Adsorption of natural organic polyelectrolytes by activated carbon: A size-exclusion chromatography study", Environ. Sci. Technol., 30, 1336-1343. https://doi.org/10.1021/es950547r.
  56. Kruger, T., Wiegand, C., Kun, L., Luckas, B. and Pflugmacher, S. (2010), "More and more toxins around-analysis of cyanobacterial strains isolated from Lake Chao (Anhui Province, China)", Toxicon, 56, 1520-1524. https://doi.org/10.1016/j.toxicon.2010.09.004.
  57. Lalezary-Craig, S., Pirbazari, M., Dale, M.S., Tanaka, T.S. and McGuire, M.J. (1988), "Optimizing the removal of Geosmin and 2-Methylisoborneol by powdered activated carbon", J. Am. Water Works Assoc., 80, 73-80. https://doi.org/10.1002/j.1551-8833.1988.tb03028.x.
  58. Lambert, T.W., Holmes, C.F.B. and Hrudey, S.E. (1996), "Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment", Water Res., 30, 1411-1422. https://doi.org/10.1016/0043-1354(96)00026-7.
  59. Lanaras, T., Cook, C.M., Eriksson, J.E., Meriluoto, J.A.O. and Hotokka, M. (1991), "Computer modelling of the 3-dimensional structures of the cyanobacterial hepatotoxins microcystin-LR and nodularin", Toxicon, 29, 901-906. https://doi.org/10.1016/0041-0101(91)90228-J.
  60. Lawton, L.A and Robertson, P.K.J. (1999), "Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters", Chem. Soc. Rev., 28, 217-224. https://doi.org/10.1039/a805416i.
  61. Lee, J. and Walker, H.W. (2006), "Effect of process variables and natural organic matter on removal of microcystin-LR by PAC -UF", Environ. Sci. Technol., 40, 7336-7342. https://doi.org/10.1021/es060352r.
  62. Lee, J. J., Walker, H., Weavers, L., Lenhart, J. and Chin, Y. (2009), "Removal of microcystin-lr from drinking water using adsorption and membrane processes", Ph.D. Dissertation, The Ohio State University, Columbus, USA.
  63. Leon, C.A., Leon, D. and Radovic, L.R. (1991), "Interfacial chemistry and electrochemistry of carbon surfaces", Chemistry and Physics of Carbon, 24, Marcel Dekker Inc., New York, USA.
  64. Li, F., Yuasa, A., Ebie, K., Azuma, Y., Hagishita, T. and Matsui, Y. (2002), "Factors affecting the adsorption capacity of dissolved organic matter onto activated carbon: modified isotherm analysis", Water Res., 36, 4592-4604. https://doi.org/10.1016/S0043-1354(02)00174-4.
  65. Li, Q., Snoeyink, V.L., Mariaas, B.J. and Campos, C. (2003), "Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds", Water Res. 37, 773-784. https://doi.org/10.1016/S0043-1354(02)00390-1.
  66. Li, Z., Yu, J., Yang, M., Zhang, J., Burch, M.D. and Han, W. (2010), "Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China", Harmful Algae, 9, 481-488. https://doi.org/10.1016/j.hal.2010.03.003.
  67. Liu, Y., Chen, W., Li, D., Huang, Z., Shen, Y. and Liu, Y. (2011), "Cyanobacteria/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China", J. Environ. Sci., 23, 575-581. https://doi.org/10.1016/S1001-0742(10)60450-0.
  68. Maatouk, I., Bouaicha, N., Fontan, D. and Levi, Y. (2002), "Seasonal variation of microcystin concentrations in the Saint-Caprais reservoir (France) and their removal in a small full-scale treatment plant", Water Res., 36, 2891-2897. https://doi.org/10.1016/S0043-1354(01)00507-3.
  69. Mashile, P.P., Mpupa, A. and Nomngongo, P.N. (2018), "Adsorptive removal of microcystin-LR from surface and wastewater using tyre-based powdered activated carbon:Kinetics and isotherms", Toxicon, 145, 25-31. https://doi.org/10.1016/j.toxicon.2018.02.044.
  70. Mbukwa, E.A., Msagati, T.A.M. and Mamba, B.B. (2012), "Quantitative variations of intracellular microcystin-LR, -RR and -YR in samples collected from four locations in Hartbeespoort Dam in North West Province (South Africa) during the 2010/2011 summer season", Int. J. Environ. Res. Public Health 9, 3484-3505. https://doi.org/10.3390/ijerph9103484.
  71. Miles, C.O., Sandvik, M., Nonga, H.E., Rundberget, T., Wilkins, A.L., Rise, F. and Ballot, A. (2013), "Identification of microcystins in a Lake Victoria cyanobacterial bloom using LCMS with thiol derivatization", Toxicon, 70, 21-31. https://doi.org/10.1016/j.toxicon.2013.03.016.
  72. Mooney, K.M., Hamilton, J.T.G., Floyd, S.D., Foy, R.H. and Elliott, C.T. (2011), "Initial studies on the occurrence of cyanobacteria and microcystins in Irish lakes", Environ. Toxicol., 26, 566-570. https://doi.org/10.1002/tox.20577.
  73. Newcombe, G. (2002), "Removal of algal toxins from drinking water using ozone and GAC", AWWA Research Foundation Report, American Water Works Association, Denver, CO
  74. Newcombe, G; and Drikas, M. (1997), "Adsorption of NOM onto activated carbon: Electrostatic and non-electrostatic effects", Carbon N. Y., 35, 1239-1250. https://doi.org/10.1016/S0008-6223(97)00078-X.
  75. Newcombe, G., Drikas, M. and Hayes, R. (1997), "Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol", Water Res. 31, 1065-1073. https://doi.org/10.1016/S0043-1354(96)00325-9.
  76. Newcombe, G., Morrison, J. and Hepplewhite, C. (2002), "Simultaneous adsorption of MIB and NOM onto activated carbon. I. Characterisation of the system and NOM adsorption", Carbon N. Y., 40, 2135-2146. https://doi.org/10.1016/S0008-6223(02)00097-0.
  77. Ng, C., Losso, J.N., Marshall, W.E. and Rao, R.M. (2002), "Freundlich adsorption isotherms of agricultural by-productbased powdered activated carbons in a geosmin-water system", Bioresour. Technol., 85, 131-135. https://doi.org/10.1016/S0960-8524(02)00093-7.
  78. Nicholson, B.C., Rositano, J. and Burch, M.D. (1994), "Destruction of cyanobacterial peptide hepatotoxins by chlorine and chloramine", Water Res., 28(6), 1297-1303. https://doi.org/10.1016/0043-1354 (94)90294-1.
  79. Orr, P.T., Jones, G.J. and Hamilton, G.R. (2004), "Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide - Implications for compliance with the Australian drinking water guidelines", Water Res., 38, 4455-4461. https://doi.org/10.1016/j.watres.2004.08.024.
  80. Pavagadhi, S., Tang, A.L.L., Sathishkumar, M., Loh, K.P. and Balasubramanian, R. (2013), "Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments", Water Res., 47(13), 4621-4629. https://doi.org/10.1016/j.watres.2013.04.033.
  81. Pavlova, V., Stoyneva-Gartner, M., Uzunov, B., Uzunov, B., Bratanova, Z., Lazarova, A. and Karadjova, I. (2015), "Microcystins-LR, -YR and -RR in Six Bulgarian Water Bodies of Health and Conservational Importance (2012-2014)", J. Water Resour. Prot., 07, 1375-1386. https://doi.org/10.4236/jwarp.2015.716111.
  82. Pekar, H., Westerberg, E., Bruno, O., Laane, A., Persson, K.M., Sundstrom, L.F. and Thim, A.M. (2016), "Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water-First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds", J. Chromatogr. A, 1429, 265-276. https://doi.org/10.1016/j.chroma.2015.12.049.
  83. Pelekani, C. and Snoeyink, V.L. (1999), "Competitive adsorption in natural water: role of activated carbon pore size", Water Research, 33(5), 1209-1219. https://doi.org/10.1016/S0043-1354(98)00329-7.
  84. Pendleton, P., Schumann, R. and Wong, S.H. (2001), "Microcystin-LR adsorption by activated carbon", J. Colloid Interface Sci., 240, 1-8. https://doi.org/10.1006/jcis.2001.7616.
  85. Peng, L., Liu, Y., Chen, W., Liu, L., Kent, M. and Song, L. (2010), "Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes:Significance for freshwater aquacultures", Ecotoxicol. Environ. Saf., 73, 1804-1811. https://doi.org/10.1016/j.ecoenv.2010.07.043.
  86. Persson, F., Heinicke, G., Hedberg, T., Hermansson, M. and Uhl, W. (2007), "Removal of geosmin and MIB by biofiltration - An investigation discriminating between adsorption and biodegradation", Environ. Technol. 28, 95-104. https://doi.org/10.1080/09593332808618770.
  87. Preece, E.P., Hardy, F.J., Moore, B.C. and Bryan, M. (2017), "A review of microcystin detections in Estuarine and Marine waters:Environmental implications and human health risk", Harmful Algae, 61, 31-45. https://doi.org/10.1016/j.hal.2016.11.006.
  88. Quinlivan, P.A., Li, L. and Knappe, D.R.U. (2005), "Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter", Water Res., 39, 1663-1673. https://doi.org/10.1016/j.watres.2005.01.029.
  89. Randtke, S.J. and Snoeyink, V.L. (1983), "Evaluating GAC adsorptive capacity", J. Am. Water Works Assoc., 75, 406-413. https://doi.org/10.1002/j.1551-8833.1983.tb05177.x.
  90. Rodrigues, M.A., Reis, M.P. and Mateus, M.C. (2013), "Liquid chromatography/negative electrospray ionization ion trap MS2 mass spectrometry application for the determination of microcystins occurrence in Southern Portugal water reservoirs", Toxicon, 74, 8-18. https://doi.org/10.1016/j.toxicon.2013.07.013.
  91. Rodriguez, I., Alfonso, C., Alfonso, A., Otero, P., Meyer, T., Breitenbach, U. and Botana, L.M. (2014), "Toxin profile in samples collected in fresh and brackish water in Germany", Toxicon, 91, 35-44. https://doi.org/10.1016/j.toxicon.2014.10.018.
  92. Rositano, J., Newcombe, G., Nicholson, B. and Sztajnbok, P. (2001), "Ozonation of NOM and algal toxins in four treated waters", Water Res., 35(1), 23-32. https://doi.org/: 10.1016/S0043-1354(00)00252-9.
  93. Rositano, J., Nicholson, B.C. and Pieronne, P. (1998), "Destruction of cyanobacterial toxins by ozone", Ozone: Science & Engineering, 20, 223-238. https://doi.org/10.1080/01919519808547273.
  94. Sengul, A.B., Ersan, G. and Tufekci, N. (2018), "Removal of intraand extracellular microcystin by submerged ultrafiltration (UF) membrane combined with coagulation/flocculation and powdered activated carbon (PAC) adsorption", J. Hazard. Mater., 343, 29-35. https://doi.org/10.1016/j.jhazmat.2017.09.018.
  95. Shang, L., Feng, M., Xu, X., Liu, F., Ke, F. and Li, W. (2018), "Co-occurrence of microcystins and taste-and-odor compounds in drinking water source and their removal in a full-scale drinking water treatment plant", Toxins (Basel), 10, 1-17. https://doi.org/10.3390/toxins10010026.
  96. Singh, S., Rai, P.K., Chau, R., Ravi, A.K., Neilan, B.A. and Asthana, R.K. (2015), "Temporal variations in microcystinproducing cells and microcystin concentrations in two fresh water ponds", Water Res., 69, 131-142. https://doi.org/10.1016/j.watres.2014.11.015.
  97. Sivonen K. and Jones, G. (1999), "Cyanobacterial toxins. In:Chorus I, Bartram J (eds) Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management, Consequences, Monitoring and Management", World Health Organization, Geneva, Switzerland. 41-111.
  98. Snoeyink, V.L. and Weber, W.J. (1967), "The Surface Chemistry of Active Carbon, A Discussion of Structure and Surface Functional Groups", Environ. Sci. Technol., 1, 228-234. https://doi.org/10.1021/es60003a003.
  99. Song, W., Teshiba, T., Rein, K. and O'Shea, K.E. (2005), "Ultrasonically induced degradation and detoxification of microcystin-LR (Cyanobacterial Toxin)", Environ. Sci. Technol., 39, 6300-6305. https://doi.org/10.1021/es048350z.
  100. Srivastava, A., Choi, G.G., Ahn, C.Y., Oh, H.M., Ravi, A.K. and Asthana, R.K. (2012), "Dynamics of microcystin production and quantification of potentially toxigenic Microcystis sp. using realtime PCR", Water Res., 46, 817-827. https://doi.org/10.1016/j.watres.2011.11.056.
  101. Svrcek, C. and Smith, D.W. (2004), "Cyanobacteria toxins and the current state of knowledge on water treatment options: A review", J. Environ. Eng. Sci., 3, 155-185. https://doi.org/10.1139/s04-010.
  102. Taylor, P., Winter, J.G., Desellas, A.M., Fletcher, R., Heintsch, L., Nakamoto, L., Utsumi, K. and Morley, A. (2011), "Lake and Reservoir Management Algal blooms in Ontario, Canada :Increases in reports since 1994", Lake Reserv. Manag., 27, 37-41. https://doi.org/10.1080/07438141.2011.557765.
  103. Tian, D., Zheng, W., Wei, X., Sun, X., Liu, L., Chen, X., Zhang, H., Zhou, Y., Chen, H., Zhang, H., Wang, X., Zhang, R., Jiang, S., Zheng, Y., Yang, G. and Qu, W. (2013), "Dissolved microcystins in surface and ground waters in regions with high cancer incidence in the Huai River Basin of China", Chemosphere, 91, 1064-1071. https://doi.org/10.1016/j.chemosphere.2013.01.051.
  104. Triantis, T., Tsimeli, K., Kaloudis, T., Thanassoulias, N., Lytras, E. and Hiskia, A. (2010), "Development of an integrated laboratory system for the monitoring of cyanotoxins in surface and drinking waters", Toxicon, 55, 979-989. https://doi.org/10.1016/j.toxicon.2009.07.012.
  105. Turner, A.D., Dhanji-Rapkova, M., O'Neill, A., Coates, L., Lewis, A. and Lewis, K. (2018), "Analysis of microcystins in cyanobacterial blooms from freshwater bodies in England", Toxins (Basel), 10(1), 39. https://doi.org/10.3390/toxins10010039.
  106. Vasas, G., Farkas, O., Borics, G., Felfoldi, T., Sramko, G., Batta, G., Bacsi, I., Gonda, S., Vasas, G., Farkas, O., Borics, G., Felfoldi, T., Sramko, G., Batta, G., Bacsi, I. and Gonda, S. (2013), "Appearance of Planktothrix rubescens Bloom with [DAsp3, Mdha7]MC-RR in Gravel Pit Pond of a Shallow Lake-Dominated Area", Toxins (Basel), 5, 2434-2455. https://doi.org/10.3390/toxins5122434.
  107. Wang, H., Ho, L., Lewis, D.M., Brookes, J.D. and Newcombe, G. (2007), "Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins", Water Res., 41, 4262-4270. https://doi.org/10.1016/j.watres.2007.05.057.
  108. Warhurst, A.M. Raggett, S.L. McConnachie, G. Pollard, S.J.T. Chipofya, V. and Codd, G.A. (1997), "Adsorption of the cyanobacterial hepatotoxin microcystin-LR by a low-cost activated carbon from the seed husks of the pan-tropical tree, Moringa oleifera", Sci. Total Environ., 207, 207-211. https://doi.org/10.1016/S0048-9697(97)00260-X
  109. Watanabe, T., Amano, Y. and Machida, M. (2012), "Screening of powdered activated carbons to remove 2-methylisoborneol for drinking water", Water Sci. Technol. Water Supply, 12, 300-308. https://doi.org/10.2166/ws.2011.134.
  110. Wijetunga, S. and Gunasekara, C.D.F.A. (2017), "Evaluation of refused tea waste activated carbon for color removal:Equilibrium and kinetic studies", Adv. Environ. Res., 6(1), 1-14. http://dx.doi.org/10.12989/aer.2017.6.1.001.
  111. Xie, J., Wang, X. and Deng, J. (2004), "Modifying the pore structure of Pit-ACF with the chemical vapor deposition of methane and propylene", Microporous Mesoporous Mater., 76, 167-175. https://doi.org/10.1016/j.micromeso.2004.08.008.
  112. Yan, H., Gong, A., He, H., Zhou, J., Wei, Y. and Lv, L. (2006), "Adsorption of microcystins by carbon nanotubes", Chemosphere, 62, 142-148. https://doi.org/10.1016/j.chemosphere.2005.03.075.
  113. Yeo, I., Park, Y. and Kim, D. (2018), "Developing numerical method to predict the removal of microcystin-LR in a clear well", Membr. Water Treat., 9(3), 173-179. http://dx.doi.org/10.12989/mwt.2018.9.3.173.
  114. Yen, H.K., Lin, T.F. and Liao, P.C. (2011), "Simultaneous detection of nine cyanotoxins in drinking water using dual solidphase extraction and liquid chromatography-mass spectrometry", Toxicon, 58, 209-218. https://doi.org/10.1016/j.toxicon.2011.06.003.
  115. Yen, H.K., Lin, T.F. and Tseng, I.C. (2012), "Detection and quantification of major toxigenic Microcystis genotypes in Moo-Tan reservoir and associated water treatment plant", J. Environ. Monit., 14, 687-696. https://doi.org/10.1039/c1em10389j.
  116. Yu, G., Jiang, Y., Song, G., Tan, W., Zhu, M. and Li, R. (2014), "Variation of Microcystis and microcystins coupling nitrogen and phosphorus nutrients in Lake Erhai, a drinking-water source in Southwest Plateau, China", Environ. Sci. Pollut. Res., 21, 9887-9898. https://doi.org/10.1007/s11356-014-2937-1.
  117. Zamyadi, A., Coral, L.A., Barbeau, B., Dorner, S., Lapolli, F.R. and Prevost, M. (2015), "Fate of toxic cyanobacterial genera from natural bloom events during ozonation", Water Res., 73, 204-215. https://doi.org/10.1016/j.watres.2015.01.029.
  118. Zastepa, A., Pick, F.R. and Blais, J.M. (2014), "Fate and Persistence of Particulate and Dissolved Microcystin-LA from Microcystis Blooms", Hum. Ecol. Risk Assess. An Int. J., 20, 1670-1686. https://doi.org/10.1080/10807039.2013.854138.
  119. Zhang, D., Liao, Q., Zhang, L., Wang, D., Luo, L., Chen, Y., Zhong, J. and Liu, J. (2015), "Occurrence and spatial distributions of microcystins in Poyang Lake, the largest freshwater lake in China", Ecotoxicology, 24, 19-28. https://doi.org/10.1007/s10646-014-1349-9.
  120. Zhang, H., Zhu, G., Jia, X., Ding, Y., Zhang, M., Gao, Q., Hu, C. and Xu, S. (2011), "Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan", J. Environ. Sci., 23, 1983-1988. https://doi.org/10.1016/S1001-0742(10)60676-6.
  121. Zhong, Q., Sun, F., Wang, W., Xiao, W., Zhao, X. and Gu, K. (2017), "Water metabolism dysfunction via renin-angiotensin system activation caused by liver damage in mice treated with microcystin-RR", Toxicol. Lett., 273, 86-96. https://doi.org/10.1016/j.toxlet.2017.03.019.
  122. Zhu, S., Yin, D., Gao, N., Zhou, S., Wang, Z. and Zhang, Z. (2016), "Adsorption of two microcystins onto activated carbon:equilibrium, kinetic, and influential factors", Desalin. Water Treat., 57, 23666-23674. https://doi.org/10.1080/19443994.2015.1137492.

Cited by

  1. Application of cherry laurel seeds activated carbon as a new adsorbent for Cr(VI) removal vol.12, pp.1, 2019, https://doi.org/10.12989/mwt.2021.12.1.011