DOI QR코드

DOI QR Code

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W. (Department of Civil Engineering, Zhejiang University) ;
  • Jin, T. (Department of Civil Engineering, Zhejiang University) ;
  • Yun, C.B. (Department of Civil Engineering, Zhejiang University)
  • 투고 : 2019.06.23
  • 심사 : 2019.08.30
  • 발행 : 2019.11.25

초록

In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

키워드

과제정보

연구 과제 주관 기관 : National Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China, Central Universities of China

참고문헌

  1. Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound. Vib., 388, 154-170. DOI: 10.1016/j.jsv.2016.10.043.
  2. Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput.-Aided Civil Infrastruct. Eng., 16(2), 126-142. DOI: 10.1111/0885-9507.00219.
  3. Adeli, H. and Yeh, C. (1989), "Perceptron learning in engineering design", Comput.-Aided Civil Infrastruct. Eng., 4(4), 247-256. DOI: 10.1111/j.1467-8667.1989.tb00026.x.
  4. Alipour, M., Harris, D.K. and Miller, G.R. (2019), "Robust pixel-level crack detection using deep fully convolutional neural networks", J. Comput. Civil. Eng., 33(6), 04019040. DOI: 10.1061/(Asce)Cp.1943-5487.0000854.
  5. Atha, D.J. and Jahanshahi, M.R. (2018), "Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection", Struct. Health. Monit., 17(5), 1110-1128. DOI: 10.1177/1475921717737051.
  6. Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017), "SegNet: a deep convolutional encoder-decoder architecture for image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., 39(12), 2481-2495. DOI: 10.1109/Tpami.2016.2644615.
  7. Bang, S., Park, S., Kim, H. and Kim, H. (2019), "Encoder-decoder network for pixel-level road crack detection in black-box images", Comput.-Aided Civil Infrastruct. Eng., 34(8), 713-727. DOI: 10.1111/mice.12440.
  8. Bao, Y.Q., Tang, Z.Y., Li, H. and Zhang, Y.F. (2019), "Computer vision and deep learning-based data anomaly detection method for structural health monitoring", Struct. Health Monit., 18(2), 401-421. DOI: 10.1177/1475921718757405.
  9. Beckman, G.H., Polyzois, D. and Cha, Y.J. (2019), "Deep learning-based automatic volumetric damage quantification using depth camera", Automat. Constr., 99, 114-124. DOI: 10.1016/j.autcon.2018.12.006.
  10. Bishop, C.M. (2006), Pattern Recognition and Machine Learning, Springer, New York, NY, USA.
  11. Ceylan, H., Bayrak, M.B. and Gopalakrishnan, K. (2014), "Neural networks applications in pavement engineering: a recent survey", Intl. J. Pavement Res. Tech., 7(6), 434-444. DOI: 10.6135/ijprt.org.tw/2014.7(6).434.
  12. Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastruct. Eng., 32(5), 361-378. DOI: 10.1111/mice.12263.
  13. Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput.-Aided Civil Infrastruct. Eng., 33, 731-747. DOI: 10.1111/mice.12334.
  14. Chellapilla, K., Puri, S. and Simard, P. (2006), "High performance convolutional neural networks for document processing", Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition, La Baule, France (CD-ROM).
  15. Chen, F.C. and Jahanshahi, M.R. (2018), "NB-CNN: deep learning-based crack detection using convolutional neural network and naive bayes data fusion", IEEE T.. Ind. Electron., 65(5), 4392-4400. DOI: 10.1109/Tie.2017.2764844.
  16. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2018), "DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs", IEEE T. Pattern Anal. Mach. Intell., 40(4), 834-848. DOI: 10.1109/Tpami.2017.2699184.
  17. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I. and Abbeel, P. (2016), "InfoGAN: interpretable representation learning by information maximizing generative adversarial nets", Proceedings of the 30th Conference on Neural Information Processing Systems, Barcelona, Spain (CD-ROM).
  18. Cheng, J.C.P. and Wang, M.Z. (2018), "Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques", Automat. Constr., 95, 155-171. DOI: 10.1016/j.autcon.2018.08.006.
  19. Cho, S., Yun, C.B. and Sim, S.H. (2015), "Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model", Smart. Struct. Syst., 15(3), 645-663. https://doi.org/10.12989/sss.2015.15.3.645.
  20. Ciresan, D.C., Meier, U., Gambardella, L.M. and Schmidhuber, J. (2010), "Deep, big, simple neural nets for handwritten digit recognition", Neural Comput., 22(12), 3207-3220. DOI: 10.1162/Neco_a_00052.
  21. DeVries, P.M.R., Viegas, F., Wattenberg, M. and Meade, B.J. (2018), "Deep learning of aftershock patterns following large earthquakes", Nature, 560(7720), 632-634. DOI: 10.1038/s41586-018-0438-y.
  22. Dick, K., Russell, L., Dosso, Y.S., Kwamena, F. and Green, J.R. (2019), "Deep learning for critical infrastructure resilience", J. Infrastruct. Syst., 25(2), 05019003. DOI: 10.1061/(Asce)Is.1943-555x.0000477.
  23. Dinh, K., Gucunski, N. and Duong, T.H. (2018), "An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks", Automat. Constr., 89, 292-298. DOI: 10.1016/j.autcon.2018.02.017.
  24. Dong, C., Loy, C.C., He, K.M. and Tang, X.O. (2016), "Image super-resolution using deep convolutional networks", IEEE Trans. Pattern Anal. Mach. Intell., 38(2), 295-307. DOI: 10.1109/Tpami.2015.2439281.
  25. Dong, C.Z., Ye, X.W. and Jin, T. (2018), "Identification of structural dynamic characteristics based on machine vision technology", Measurement, 126, 405-416. DOI: 10.1016/j.measurement.2017.09.043.
  26. Dorafshan, S., Thomas, R.J. and Maguire, M. (2018), "Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete", Constr. Build. Mater., 186, 1031-1045. DOI: 10.1016/j.conbuildmat.2018.08.011.
  27. Duan, Y.F., Chen, Q.Y., Zhang, H.M., Yun, C.B., Wu, S.K. and Zhu, Q. (2019), "CNN-based damage identification method of tied-arch bridge using spatial-spectral information", Smart. Struct. Syst., 23(5), 507-520. https://doi.org/10.12989/sss.2019.23.5.507.
  28. Dung, C.V. and Anh, L.D. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. DOI: 10.1016/j.autcon.2018.11.028.
  29. Dung, C.V., Sekiya, H., Hirano, S., Okatani, T. and Miki, C. (2019), "A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks", Automat. Constr., 102, 217-229. DOI: 10.1016/j.autcon.2019.02.013.
  30. Elman, J.L. (1990), "Finding structure in time", Cogn. Sci., 14(2), 179-211. DOI: 10.1207/s15516709cog1402_1.
  31. Fan, G., Li, J. and Hao, H. (2019), "Lost data recovery for structural health monitoring based on convolutional neural networks", Struct. Control. Health Monit., 26(10), e2433. DOI: 10.1002/Stc.2433.
  32. Feng, D.M. and Feng, M.Q. (2018), "Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection - a review", Eng. Struct., 156, 105-117. DOI: 10.1016/j.engstruct.2017.11.018.
  33. Gao, X.W., Jian, M., Hu, M., Tanniru, M. and Li, S.Q. (2019), "Faster multi-defect detection system in shield tunnel using combination of FCN and Faster RCNN", Adv. Struct. Eng., 22(13), 2907-2921. DOI: 10.1177/1369433219849829.
  34. Gao, Y. and Spencer, B.F. (2007), "Experimental verification of a distributed computing strategy for structural health monitoring", Smart. Struct. Syst., 3(4), 455-474. DOI: 10.12989/sss.2007.3.4.455.
  35. Gao, Y.Q., Kong, B.Y. and Mosalam, K.M. (2019), "Deep leaf-bootstrapping generative adversarial network for structural image data augmentation", Comput.-Aided Civil Infrastruct. Eng., 34(9), 755-773. DOI: 10.1111/mice.12458.
  36. Gao, Y.Q. and Mosalam, K.M. (2018), "Deep transfer learning for image-based structural damage recognition", Comput.-Aided Civil Infrastruct. Eng., 33(9), 748-768. DOI: 10.1111/mice.12363.
  37. Gibert, X., Patel, V. and Chellappa, R. (2017), "Deep multitask learning for railway track inspection", IEEE T. Intell. Transp. Syst., 18(1), 153-164. DOI: 10.1109/Tits.2016.2568758.
  38. Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition", Columbus, USA (CD-ROM).
  39. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), "Generative adversarial nets", Proceedings of the International Conference on Neural Information Processing Systems, Montreal, Canada (CD-ROM).
  40. Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press, Boston, MA, USA.
  41. Gopalakrishnan, K., Khaitan, S.K., Choudhary, A. and Agrawal, A. (2017), "Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection", Constr. Build. Mater., 157, 322-330. DOI: 10.1016/j.conbuildmat2017.09.110.
  42. Gulgec, N.S., Takac, M. and Pakzad, S.N. (2019), "Convolutional neural network approach for robust structural damage detection and localization", J. Comput. Civil. Eng., 33(3), 04019005. DOI: 10.1061/(Asce)Cp.1943-5487.0000820.
  43. Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks - a review", Smart. Struct. Syst., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159.
  44. He, K.M., Zhang, X.Y., Ren, S.Q. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA (C-ROM).
  45. Hinton, G.E., Krizhevsky, A. and Wang, S.D. (2011), "Transforming auto-encoders", Proceedings of the 21st International Conference on Artificial Neural Networks, Espoo, Finland (CD-ROM).
  46. Hinton, G.E., Osindero, S. and Teh, Y.W. (2006), "A fast learning algorithm for deep belief nets", Neural Comput., 18(7), 1527-1554. DOI: 10.1162/neco.2006.18.7.1527.
  47. Hinton, G.E. and Salakhutdinov, R.R. (2006), "Reducing the dimensionality of data with neural networks", Science, 313(5786), 504-507. DOI: 10.1126/science.1127647.
  48. Hoang, N.D., Nguyen, Q.L. and Tran, V.D. (2018), "Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network", Automat. Constr., 94, 203-213. DOI: 10.1016/j.autcon.2018.07.008.
  49. Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput, 9(8), 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
  50. Hopfield, J.J. (1982), "Neural networks and physical systems with emergent collective computational abilities", Proc. Natl. Acad. Sci. USA., 79(8), 2554-2558. DOI: 10.1073/pnas.79.8.2554.
  51. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. (2017), "Mobilenets: efficient convolutional neural networks for mobile vision applications", arXiv preprint arXiv:1704.04861.
  52. Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017), "Densely connected convolutional networks", Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition", Honolulu, USA (CD-ROM).
  53. Huang, H.W., Li, Q.T. and Zhang, D.M. (2018), "Deep learning based image recognition for crack and leakage defects of metro shield tunnel", Tunn. Undergr. Sp. Tech., 77, 166-176. DOI: 10.1016/j.tust.2018.04.002.
  54. Huynh, T.C., Park, J.H., Jung, H.J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Automat. Constr., 105, UNSP 102844. DOI: 10.1016/J.Autcon.2019.102844.
  55. Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer, B.F. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart. Struct. Syst., 6(5-6), 439-459. https://doi.org/ 10.12989/sss.2010.6.5_6.439.
  56. Kang, D.H. and Cha, Y.J. (2018), "Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging", Comput.-Aided Civil Infrastruct. Eng., 33(10), 885-902. DOI: 10.1111/mice.12375.
  57. Kang, G.Q., Gao, S.B., Yu, L. and Zhang, D.K. (2019), "Deep architecture for high-speed railway insulator surface defect detection: denoising autoencoder with multitask learning", IEEE T. Instrum. Meas., 68(8), 2679-2690. DOI: 10.1109/Tim.2018.2868490.
  58. Kesavan, K., Ravisankar, K., Parivallal, S. and Sreeshylam, P. (2005), "Applications of fiber optic sensors for structural health monitoring", Smart. Struct. Syst., 1(4), 355-368. https://doi.org/10.12989/sss.2005.1.4.355.
  59. Khodabandehlou, H., Pekcan, G. and Fadali, M.S. (2019), "Vibration-based structural condition assessment using convolution neural networks", Struct. Control. Health Monit., 26(2), e2308. DOI: 10.1002/Stc.2308.
  60. Kim, B. and Cho, S. (2018), "Automated vision-based detection of cracks on concrete surfaces using a deep learning technique", Sensors, 18(10), 3452. DOI: 10.3390/S18103452.
  61. Kim, B. and Cho, S. (2019), "Image-based concrete crack assessment using mask and region-based convolutional neural network", Struct. Control. Health Monit., 26(8), e2381. DOI: 10.1002/Stc.2381.
  62. Kim, H. and Sim, S.H. (2019), "Automated peak picking using region-based convolutional neural network for operational modal analysis", Struct. Control. Health Monit., e2436. DOI: 10.1002/Stc.2436.
  63. Kim, I.H., Jeon, H., Baek, S.C., Hong, W.H. and Jung, H.J. (2018), "Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle", Sensors, 18(6), 1881. DOI: 10.3390/S18061881.
  64. Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, USA (CD-ROM).
  65. Kumar, S.S., Abraham, D.M., Jahanshahi, M.R., Iseley, T. and Starr, J. (2018), "Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks", Automat. Constr., 91, 273-283. DOI: 10.1016/j.autcon.2018.03.028.
  66. Lake, B.M., Salakhutdinov, R. and Tenenbaum, J.B. (2015), "Human-level concept learning through probabilistic program induction", Science, 350(6266), 1332-1338. DOI: 10.1126/science.aab3050.
  67. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. and Jackel, L.D. (1989), "Backpropagation applied to handwritten zip code recognition", Neural Comput., 1(4), 541-551. DOI: 10.1162/neco.1989.1.4.541.
  68. LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), "Gradient-based learning applied to document recognition", Proc. IEEE, 86(11), 2278-2324. DOI: 10.1109/5.726791.
  69. LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521(7553), 436-444. DOI: 10.1038/nature14539.
  70. Lee, S., Ha, J., Zokhirova, M., Moon, H. and Lee, J. (2018), "Background information of deep learning for structural engineering", Arch. Comput. Method E., 25(1), 121-129. DOI: 10.1007/s11831-017-9237-0.
  71. Li, C., Xu, P.J., Niu, L.J.L., Chen, Y., Sheng, L.S. and Liu, M.C. (2019), "Tunnel crack detection using coarse-to-fine region localization and edge detection", Wiley Interdiscip. Rev.-Data Mining Knowl. Discov., 9(5), e1308. DOI:10.1002/Widm.1308.
  72. Li, D.S., Cong, A.R. and Guo, S. (2019), "Sewer damage detection from imbalanced CCTV inspection data using deep convolutional neural networks with hierarchical classification", Autom. Constr., 101, 199-208. DOI: 10.1016/j.autcon.2019.01.017.
  73. Li, R.X., Yuan, Y.C., Zhang, W. and Yuan, Y.L. (2018), "Unified vision-based methodology for simultaneous concrete defect detection and geolocalization", Comput.-Aided Civil Infrastruct. Eng., 33(7), 527-544. DOI: 10.1111/mice.12351.
  74. Li, S.L., Guo, Y.P., Xu, Y. and Li, Z.L. (2019), "Real-time geometry identification of moving ships by computer vision techniques in bridge area", Smart. Struct. Syst., 23(4), 359-371. https://doi.org/10.12989/sss.2019.23.4.359.
  75. Li, S.Y., Zhao, X.F. and Zhou, G.Y. (2019), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Comput.-Aided Civil Infrastruct. Eng., 34(7), 616-634. DOI: 10.1111/mice.12433.
  76. Liang, X. (2019), "Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization", Comput.-Aided Civil Infrastruct. Eng., 34(5), 415-430. DOI: 10.1111/mice.12425.
  77. Liang, Y., Wu, D.L., Liu, G.R., Li, Y.H., Gao, C.L., Ma, Z.G.J. and Wu, W.D. (2016), "Big data-enabled multiscale serviceability analysis for aging bridges", Digit. Commun. Netw., 2(3), 97-107. DOI: 10.1016/j.dcan.2016.05.002.
  78. Lin, G.S., Milan, A., Shen, C.H. and Reid, I. (2017), "RefineNet: multi-path refinement networks for high-resolution semantic segmentation", Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition", Honolulu, USA, (CD-ROM).
  79. Lin, Y.Z., Nie, Z.H. and Ma, H.W. (2017), "Structural damage detection with automatic feature-extraction through deep learning", Comput.-Aided Civil Infrastruct. Eng., 32(12), 1025-1046. DOI: 10.1111/mice.12313.
  80. Liu, H. and Zhang, Y.F. (2019), "Image-driven structural steel damage condition assessment method using deep learning algorithm", Measurement, 133, 168-181. DOI: 10.1016/j.measurement.2018.09.081.
  81. Liu, J.B., Huang, Y.P., Zou, Q., Tian, M., Wang, S.C., Zhao, X.X., Dai, P. and Ren, S.W. (2019), "Learning visual similarity for inspecting defective railway fasteners", IEEE Sens. J., 19(16), 6844-6857. DOI: 10.1109/Jsen.2019.2911015.
  82. Liu, J.T., Yang, X.X. and Li, L. (2019), "VibroNet: recurrent neural networks with multi-target learning for image-based vibration frequency measurement", J. Sound Vib., 457, 51-66. DOI: 10.1016/j.jsv.2019.05.027.
  83. Lyu, T., Xu, C.H., Chen, G.M., Li, Q.Y., Zhao, T.T. and Zhao, Y.P. (2019), "Health state inversion of jack-up structure based on feature learning of damage information", Eng. Struct., 186, 131-145. DOI: 10.1016/j.engstruct.2019.02.004.
  84. Maeda, H., Sekimoto, Y., Seto, T., Kashiyama, T. and Omata, H. (2018), "Road damage detection and classification using deep neural networks with smartphone images", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1127-1141. DOI: 10.1111/mice.12387.
  85. Matos, J.C.E., Garcia, O., Henriques, A.A., Casas, J.R. and Vehi, J. (2009), "Health monitoring system (HMS) for structural assessment", Smart. Struct. Syst., 5(3), 223-240. https://doi.org/10.12989/sss.2009.5.3.223.
  86. Mcculloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", B. Math. Biol., 5, 115-133. DOI: 10.1007/BF02478259.
  87. Min, J., Park, S. and Yun, C.B. (2010), "Impedance-based structural health monitoring using neural networks for autonomous frequency range selection", Smart Mater. Struct., 19(12), 125011. DOI: 10.1088/0964-1726/19/12/125011.
  88. Min, J., Yi, J.H. and Yun, C.B. (2015), "Electromechanical impedance-based long-term SHM for jacket-type tidal current power plant structure", Smart. Struct. Syst., 15(2), 283-297. https://doi.org/10.12989/sss.2015.15.2.283.
  89. Ni, F.T., Zhang, J. and Chen, Z.Q. (2019), "Pixel-level crack delineation in images with convolutional feature fusion", Struct. Control. Health Monit., 26(1), e2286. DOI: 10.1002/Stc.2286.
  90. Ni, F.T., Zhang, J. and Chen, Z.Q. (2019), "Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning", Comput.-Aided Civil Infrastruct. Eng., 34(5), 367-384. DOI: 10.1111/mice.12421.
  91. Ni, Y.Q., Wang, B.S. and Ko, J.M. (2002), "Constructing input vectors to neural networks for structural damage identification", Smart Mater. Struct., 11(6), 825-833. DOI: 10.1088/0964-1726/11/6/301.
  92. Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: Analytical model and application", J. Struct. Eng., 136(12), 1563-1573. DOI: 10.1061/(Asce)St.1943-541x.0000250.
  93. Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech., 138(2), 175-183. DOI: 10.1061/(Asce)Em.1943-7889.0000313.
  94. Noh, H., Hong, S. and Han, B. (2015), "Learning deconvolution network for semantic segmentation", Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile (CD-ROM).
  95. Nowozin, S., Cseke, B. and Tomioka, R. (2016), "f-GAN: training generative neural samplers using variational divergence minimization", Proceedings of the 30th Conference on Neural Information Processing Systems, Barcelona, Spain (CD-ROM).
  96. Oh, B.K., Glisic, B., Kim, Y. and Park, H.S. (2019), "Convolutional neural network-based wind-induced response estimation model for tall buildings", Comput.-Aided Civil Infrastruct. Eng., 34(10), 843-858. DOI: 10.1111/mice.12476.
  97. Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart. Struct. Syst., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521.
  98. Park, S., Bang, S., Kim, H. and Kim, H. (2019), "Patch-based crack detection in black box images using convolutional neural networks", J. Comput. Civil. Eng., 33(3), 04019017. DOI: 10.1061/(Asce)Cp.1943-5487.0000831.
  99. Paszke, A., Chaurasia, A., Kim, S. and Culurciello, E. (2016). "Enet: a deep neural network architecture for real-time semantic segmentation", arXiv preprint arXiv:1606.02147.
  100. Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W.Q. and Ni, P.H. (2018), "Structural damage identification based on autoencoder neural networks and deep learning", Eng. Struct., 172, 13-28. DOI: 10.1016/j.engstruct.2018.05.109.
  101. Rafiei, M.H. and Adeli, H. (2018), "A novel unsupervised deep learning model for global and local health condition assessment of structures", Eng. Struct., 156, 598-607. DOI: 10.1016/j.engstruct.2017.10.070.
  102. Raina, R., Madhavan, A. and Ng, A.Y. (2009), "Large-scale deep unsupervised learning using graphics processors", Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Canada (CD-ROM).
  103. Ren, S.Q., He, K.M., Girshick, R. and Sun, J. (2015), "Faster R-CNN: towards real-time object detection with region proposal networks", Proceedings of the 29th Annual Conference on Neural Information Processing Systems, Montreal, Canada (CD-ROM).
  104. Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-Net: convolutional networks for biomedical image segmentation", Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention, Munich, Germany (CD-ROM).
  105. Rosenblatt, F. (1958), "The perceptron - a probabilistic model for information-storage and organization in the brain", Psychol. Rev., 65(6), 386-408. DOI: 10.1037/H0042519.
  106. Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323(6088), 533-536. DOI: 10.1038/323533a0.
  107. Russell, S.J. and Norvig, P. (2016), Artificial Intelligence: A Modern Approach, Pearson Education Limited, Harlow, England, UK.
  108. Sabour, S., Frosst, N. and Hinton, G.E. (2017), "Dynamic routing between capsules", Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, USA (CD-ROM).
  109. Sajedi, S.O. and Liang, X. (2019), "A convolutional cost-sensitive crack localization algorithm for automated and reliable RC bridge inspection", arXiv preprint arXiv:1905.09716.
  110. Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. DOI: 10.1016/j.engstruct.2018.05.084.
  111. Schmidhuber, J. (2015), "Deep learning in neural networks: an overview", Neural Netw., 61, 85-117. DOI: 10.1016/j.neunet.2014.09.003.
  112. Shelhamer, E., Long, J. and Darrell, T. (2017), "Fully convolutional networks for semantic segmentation", IEEE Trans. Pattern Anal. Mach. Intell., 39(4), 640-651. DOI: 10.1109/Tpami.2016.2572683.
  113. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T. and Hassabis, D. (2016), "Mastering the game of Go with deep neural networks and tree search", Nature, 529(7587), 484-489. DOI: 10.1038/nature16961.
  114. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.T., Lillicrap, T., Hui, F., Sifre, L., Van Den Driessche, G., Graepel, T. and Hassabis, D. (2017), "Mastering the game of Go without human knowledge", Nature, 550(7676), 354-359. DOI: 10.1038/nature24270.
  115. Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556.
  116. Song, Q., Wu, Y.Q., Xin, X.S., Yang, L., Yang, M., Chen, H.M., Liu, C., Hu, M.J., Chai, X.S. and Li, J.C. (2019), "Real-time tunnel crack analysis system via deep learning", IEEE Access, 7, 64186-64197. DOI: 10.1109/Access.2019.2916330.
  117. Sony, S., Laventure, S. and Sadhu, A. (2019), "A literature review of next-generation smart sensing technology in structural health monitoring", Struct. Control. Health Monit., 26(3), e2321. DOI: 10.1002/Stc.2321.
  118. Spencer, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. DOI: 10.1016/j.eng.2018.11.030.
  119. Szegedy, C., Liu, W., Jia, Y.Q., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2014), "Going deeper with convolutions", arXiv preprint arXiv:1409.4842.
  120. Szewczyk, Z.P. and Hajela, P. (1994), "Damage detection in structures based on feature-sensitive neural networks", J. Comput. Civil. Eng., 8(2), 163-178. DOI: 10.1061/(Asce)0887-3801(1994)8:2(163).
  121. Tang, Z.Y., Chen, Z.C., Bao, Y.Q. and Li, H. (2019), "Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring", Struct. Control. Health Monit., 26(1), e2296. DOI: 10.1002/Stc.2296.
  122. Tong, Z., Gao, J. and Zhang, H.T. (2017), "Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks", Constr. Build. Mater., 146, 775-787. DOI: 10.1016/j.conbuildmat.2017.04.097.
  123. Tong, Z., Gao, J., Han, Z.Q. and Wang, Z.J. (2018), "Recognition of asphalt pavement crack length using deep convolutional neural networks", Road Mater. Pavement Des., 19(6), 1334-1349. DOI: 10.1080/14680629.2017.1308265.
  124. Tong, Z., Gao, J., Sha, A.M., Hu, L.Q. and Li, S. (2018), "Convolutional neural network for asphalt pavement surface texture analysis", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1056-1072. DOI: 10.1111/mice.12406.
  125. Vodrahalli, K. and Bhowmik, A.K. (2017), "3D computer vision based on machine learning with deep neural networks: a review", J. Soc. Inf. Disp., 25(11), 676-694. DOI: 10.1002/jsid.617.
  126. Wang, M.Z. and Cheng, J.C.P. (2019), "A unified convolutional neural network integrated with conditional random field for pipe defect segmentation", Comput.-Aided Civil Infrastruct. Eng., DOI: 10.1111/mice.12481.
  127. Wang, N.N., Zhao, Q.G., Li, S.Y., Zhao, X.F. and Zhao, P. (2018), "Damage classification for masonry historic structures using convolutional neural networks based on still images", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1073-1089. DOI: 10.1111/mice.12411.
  128. Wang, Z.Y., Zheng, H.R., Li, L.C., Liang, J.J., Wang, X., Lu, B., Ye, Q., Qu, R.H. and Cai, H.W. (2019), "Practical multi-class event classification approach for distributed vibration sensing using deep dual path network", Opt. Express, 27(17), 23682-23692. DOI: 10.1364/Oe.27.023682.
  129. Wei, X.K., Yang, Z.M., Liu, Y.X., Wei, D.H., Jia, L.M. and Li, Y.J. (2019), "Railway track fastener defect detection based on image processing and deep learning techniques: a comparative study", Eng. Appl. Artif. Intell., 80, 66-81. DOI: 10.1016/j.engappai.2019.01.008.
  130. Weng, J.Y., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M. and Thelen, E. (2001), "Artificial intelligence - autonomous mental development by robots and animals", Science, 291(5504), 599-600. DOI: 10.1126/science.291.5504.599.
  131. Wu, R.T. and Jahanshahi, M.R. (2019), "Deep convolutional neural network for structural dynamic response estimation and system identification", J. Eng. Mech., 145(1), 04018125. DOI: 10.1061/(Asce)Em.1943-7889.0001556.
  132. Wu, R.T., Singla, A., Jahanshahi, M.R., Bertino, E., Ko, B.J. and Verma, D. (2019), "Pruning deep convolutional neural networks for efficient edge computing in condition assessment of infrastructures", Comput.-Aided Civil Infrastruct. Eng., 34(9), 774-789. DOI: 10.1111/mice.12449.
  133. Wu, X., Ghaboussi, J. and Garrett, J.H. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659. DOI: 10.1016/0045-7949(92)90132-J.
  134. Xu, Y., Wei, S.Y., Bao, Y.Q. and Li, H. (2019), "Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network", Struct. Control. Health Monit., 26(3), e2313. DOI: 10.1002/Stc.2313.
  135. Xue, Y.D. and Li, Y.C. (2018), "A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects", Comput.-Aided Civil Infrastruct. Eng., 33(8), 638-654. DOI: 10.1111/mice.12367.
  136. Yang, G.W., Li, Q.J., Zhan, Y., Fei, Y. and Zhang, A.N. (2018), "Convolutional neural network-based friction model using pavement texture data", J. Comput. Civil Eng., 32(6), 04018052. DOI: 10.1061/(Asce)Cp.1943-5487.0000797.
  137. Yang, X.C., Li, H., Yu, Y.T., Luo, X.C., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastruct. Eng., 33(12), 1090-1109. DOI: 10.1111/mice.12412.
  138. Ye, X.W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012), "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data", Eng. Struct., 45, 166-176. DOI: 10.1016/j.engstruct.2012.06.016.
  139. Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.
  140. Ye, X.W., Yi, T.H., Dong, C.Z., Liu, T. and Bai, H. (2015), "Multi-point displacement monitoring of bridges using a vision-based approach", Wind Struct., 20(2), 315-326. https://doi.org/10.12989/was.2015.20.2.315.
  141. Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016a), "Vision-based structural displacement measurement: system performance evaluation and influence factor analysis", Measurement, 88, 372-384. DOI: 10.1016/j.measurement.2016.01.024.
  142. Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart. Struct. Syst., 17(6), 935-956. DOI: 10.12989/sss.2016.17.6.935.
  143. Ye, X.W., Dong, C.Z. and Liu, T. (2016c), "Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification", Smart. Struct. Syst., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585.
  144. Ye, X.W., Jin, T. and Chen, P.Y. (2019). "Structural crack detection using deep learning-based fully convolutional networks", Adv. Struct. Eng., DOI: 10.1177/1369433219836292.
  145. Yeum, C.M., Dyke, S.J. and Ramirez, J. (2018), "Visual data classification in post-event building reconnaissance", Eng. Struct., 155, 16-24. DOI: 10.1016/j.engstruct.2017.10.057.
  146. Yeum, C.M., Choi, J. and Dyke, S.J. (2019), "Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure", Struct. Health Monit., 18(3), 675-689. DOI: 10.1177/1475921718765419.
  147. Yu, Y., Wang, C.Y., Gu, X.Y. and Li, J.C. (2019), "A novel deep learning-based method for damage identification of smart building structures", Struct. Health Monit., 18(1), 143-163. DOI: 10.1177/1475921718804132.
  148. Yun, C.B. and Bahng, E.Y. (2000), "Substructural identification using neural networks", Comput. Struct., 77(1), 41-52. DOI: 10.1016/S0045-7949(99)00199-6.
  149. Zeiler, M.D. and Fergus, R. (2014), "Visualizing and understanding convolutional networks", Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, (CD-ROM).
  150. Zhang, A., Wang, K.C.P., Li, B.X., Yang, E.H., Dai, X.X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network", Comput.-Aided Civil Infrastruct. Eng., 32(10), 805-819. DOI: 10.1111/mice.12297.
  151. Zhang, A., Wang, K.C.P., Fei, Y., Liu, Y., Tao, S.Y., Chen, C., Li, J.Q. and Li, B.X. (2018), "Deep learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet", J. Comput. Civil Eng., 32(5), 4018041. DOI: 10.1061/(Asce)Cp.1943-5487.0000775.
  152. Zhang, A., Wang, K.C.P., Fei, Y., Liu, Y., Chen, C., Yang, G.W., Li, J.Q., Yang, E.H. and Qiu, S. (2019), "Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network", Comput.-Aided Civil Infrastruct. Eng., 34(3), 213-229. DOI: 10.1111/mice.12409.
  153. Zhang, B., Zhou, L.M. and Zhang, J. (2019), "A methodology for obtaining spatiotemporal information of the vehicles on bridges based on computer vision", Comput.-Aided Civil Infrastruct. Eng., 34(6), 471-487. DOI: 10.1111/mice.12434.
  154. Zhang, J.M., Lu, C.Q., Wang, J., Wang, L. and Yue, X.G. (2019), "Concrete cracks detection based on FCN with dilated convolution", Appl. Sci.-Basel, 9(13), 2686. DOI: 10.3390/App9132686.
  155. Zhang, K.G., Cheng, H.D. and Zhang, B.Y. (2018), "Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning", J. Comput. Civil. Eng., 32(2), 04018001. DOI: 10.1061/(Asce)Cp.1943-5487.0000736.
  156. Zhang, X., Zhou, X.Y., Lin, M.X. and Sun, R. (2018), "ShuffleNet: an extremely efficient convolutional neural network for mobile devices", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition", Salt Lake City, USA (CD-ROM).
  157. Zhang, X.X., Rajan, D. and Story, B. (2019), "Concrete crack detection using context-aware deep semantic segmentation network", Comput.-Aided Civil Infrastruct. Eng., DOI: 10.1111/mice.12477.
  158. Zhang, Y.Q., Miyamori, Y., Mikami, S. and Saito, T. (2019), "Vibration-based structural state identification by a 1-dimensional convolutional neural network", Comput.-Aided Civil Infrastruct. Eng., 34(9), 822-839. DOI: 10.1111/mice.12447.
  159. Zhao, H.S., Shi, J.P., Qi, X.J., Wang, X.G. and Jia, J.Y. (2017), "Pyramid scene parsing network", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition", Honolulu, USA (CD-ROM).
  160. Zhao, J., Mathieu, M. and LeCun, Y. (2016), "Energy-based generative adversarial network", arXiv preprint arXiv:1609.03126.
  161. Zhao, X.F., Zhang, Y. and Wang, N.N. (2019), "Bolt loosening angle detection technology using deep learning", Struct. Control. Health Monit., 26(1), e2292. DOI: 10.1002/Stc.2292.
  162. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z.Z., Du, D.L., Huang, C. and Torr, P.H.S. (2015), "Conditional random fields as recurrent neural networks", Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile (CD-ROM).
  163. Zhou, C., Chase, J.G. and Rodgers, G.W. (2019), "Degradation evaluation of lateral story stiffness using HLA-based deep learning networks", Adv. Eng. Inform., 39, 259-268. DOI: 10.1016/j.aei.2019.01.007.

피인용 문헌

  1. A vision-based active learning convolutional neural network model for concrete surface crack detection vol.23, pp.13, 2019, https://doi.org/10.1177/1369433220924792
  2. MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure vol.10, pp.5, 2019, https://doi.org/10.1007/s13349-020-00409-0
  3. Design and Validation of a Scalable, Reconfigurable and Low-Cost Structural Health Monitoring System vol.21, pp.2, 2021, https://doi.org/10.3390/s21020648
  4. Deep Transfer Learning and Time-Frequency Characteristics-Based Identification Method for Structural Seismic Response vol.7, 2019, https://doi.org/10.3389/fbuil.2021.627058
  5. Machine learning-based prediction and performance study of transparent soil properties vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.289
  6. Measurement of Acceleration Response Functions with Scalable Low-Cost Devices. An Application to the Experimental Modal Analysis vol.21, pp.19, 2021, https://doi.org/10.3390/s21196637