Acknowledgement
Supported by : National Natural Science Foundation of China, Central Universities, Australian Research Council (ARC)
References
- An, G., Woo, W. and Park, J. (2019), "Welding residual stress effect in fracture toughness", J. Nanosci. Nanotech., 19(4), 2323-2328. https://doi.org/10.1166/jnn.2019.16008
- ANSI/AISC360-10 (2010), Specification for Structural Steel Buildings; American Institute of Steel Construction, Chicago, IL, USA.
- Ban, H.Y., Shi, G., Shi, Y.J. and Wang, Y.Q. (2013), "Residual stress of 460 MPa high strength steel welded box section: Experimental investigation and modeling", Thin-Wall. Struct., 64, 73-82. https://doi.org/10.1016/j.tws.2012.12.007
- Besevic, M. (2012), "Experimental investigation of residual stresses in cold formed steel sections", Steel Compos. Struct., Int. J., 12(6), 465-489. https://doi.org/10.12989/scs.2012.12.6.465
- Cai, Y. and Young, B. (2019), "Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates", Steel Compos. Struct., Int. J., 30(6), 551-565. https://doi.org/10.12989/scs.2019.30.6.551
- Cao, X., Xu, Y., Wang, M., Zhao, G., Gu, L. and Kong, Z. (2018), "Experimental study on the residual stresses of 800 MPa high strength steel welded box sections", J. Constr. Steel Res., 148, 720-727. https://doi.org/10.1016/j.jcsr.2018.06.019
- Chen, X. and Shi, G. (2019), "Cyclic tests on high strength steel flange-plate beam-to-column joints", Eng. Struct., 186, 564-581. https://doi.org/10.1016/j.engstruct.2019.01.093
- Chen, Z., Liu, X. and Zhou, W. (2018), "Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures", Steel Compos. Struct., Int. J., 27(4), 509-523. https://doi.org/10.12989/scs.2018.27.4.509
- Choi, J.Y. and Kwon, Y.B. (2018), "Direct strength method for high strength steel welded section columns", Steel Compos. Struct., Int. J., 29(4), 509-526. https://doi.org/10.12989/scs.2018.29.4.509
- Estuar, F. and Tall, L. (1963), "Experimental investigation of welded built-up columns", Welding J., 42, 164-s-176-s.
- Eurocode 3 (2005), Design of Steel Structures-Part 1-1: General Rules and Rules for Buildings; European Committee for Standardization, Brussels, Belgium.
- European Convention for Constructional Steelworks (ECCS) (1976), Manual on stability of steel structures: Part 2.2. Mechanical properties and residual stresses; ECCS Publ., Bruxelles, Belgium.
- Fang, H., Chan, T.-M. and Young, B. (2018), "Structural performance of cold-formed high strength steel tubular columns", Eng. Struct., 177, 473-488. https://doi.org/10.1016/j.engstruct.2018.09.082
- Farahi, M. and Erfani, S. (2017), "Employing a fiber-based finitelength plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns", Steel Compos. Struct., Int. J., 23(5), 501-516. https://doi.org/10.12989/scs.2017.23.5.501
- Feng, L. and Qian, X. (2018), "Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios", Marine Struct., 61, 343-360. https://doi.org/10.1016/j.marstruc.2018.06.011
- Gardner, L., Bu, Y. and Theofanous, M. (2016), "Laser-welded stainless steel I-sections: Residual stress measurements and column buckling tests", Eng. Struct., 127, 536-548. https://doi.org/10.1016/j.engstruct.2016.08.057
- GB50017-2017 (2017), Code for design of steel structures; China Planning Press, Beijing, China.
- Gou, R., Yu, M., Zhang, Y. and Xu, X. (2014), "Residual stress measurement of 1500 m(3) spherical tanks by X-ray diffraction method", Insight, 56(1), 26-30. https://doi.org/10.1784/insi.2014.56.1.26
- Hwang, I.-H., Chun, H.-J., Hong, I.-P., Park, Y.-B. and Kim, Y.-J. (2015), "Change of transmission characteristics of FSSs in hybrid composites due to residual stresses", Steel Compos. Struct., Int. J., 19(6), 1501-1510. https://doi.org/10.12989/scs.2015.19.6.1501
- Javidan, F., Heidarpour, A., Zhao, X.L. and Minkkinen, J. (2016), "Application of high strength and ultra-high strength steel tubes in long hybrid compressive members: Experimental and numerical investigation", Thin-Wall. Struct., 102, 273-285. https://doi.org/10.1016/j.tws.2016.02.002
- Javidan, F., Heidarpour, A., Zhao, X.-L. and Al-Mahaidi, R. (2018), "Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading", Steel Compos. Struct., Int. J., 27(2), 229-242. https://doi.org/10.12989/scs.2018.27.2.229
- Jiang, J., Lee, C.K. and Chiew, S.P. (2015), "Residual stress and stress concentration effect of high strength steel built-up box Tjoints", J. Constr. Steel Res., 105, 164-173. https://doi.org/10.1016/j.jcsr.2014.11.008
- Kang, L., Ge, H.B., Suzuki, M. and Wu, B. (2018a), "An average weight whole-process method for predicting mechanical and ductile fracture performances of HSS Q690 after a fire", Constr. Build. Mater., 191, 1023-1041. https://doi.org/10.1016/j.conbuildmat.2018.10.068
- Kang, L., Suzuki, M., Ge, H.B. and Wu, B. (2018b), "Experiment of ductile fracture performances of HSSS Q690 after a fire", J. Constr. Steel Res., 146, 109-121. https://doi.org/10.1016/j.jcsr.2018.03.010
- Khan, M., Paradowska, A., Uy, B., Mashiri, F. and Tao, Z. (2016), "Residual stresses in high strength steel welded box sections", J. Constr. Steel Res., 116, 55-64. https://doi.org/10.1016/j.jcsr.2015.08.033
- Klotz, U.E., Zgraggen, M., Von Trzebiatowski, O., Schindler, H.J., Winkler, M. and Pitschieler, K. (2002), "Residual stress measurement on a welded box beam section", Materialwissenschaft Und Werkstofftechnik. 33(9), 544-549. https://doi.org/10.1002/1521-4052(200209)33:9<544::AIDMAWE544>3.0.CO;2-4
- Li, T.-J., Li, G.-Q. and Wang, Y.-B. (2015), "Residual stress tests of welded Q690 high-strength steel box- and H-sections", J. Constr. Steel Res., 115, 283-289. https://doi.org/10.1016/j.jcsr.2015.08.040
- Lian, M., Su, M.Z. and Guo, Y. (2015), "Seismic performance of eccentrically braced frames with high strength steel combination", Steel Compos. Struct., Int. J., 18(6), 1517-U217. https://doi.org/10.12989/scs.2015.18.6.1517
- Nagaraja Rao, N. and Tall, L. (1961), "Residual stresses in welded plates", Welding J., 40(10), 468-s-105-s.
- Nie, S., Zhu, Q., Yang, B. and Li, P. (2018), "Investigation of residual stresses in Q460GJ steel plates from medium-walled box sections", J. Constr. Steel Res., 148, 728-740. https://doi.org/10.1016/j.jcsr.2018.06.028
- Qiang, X.H., Jiang, X., Bijlaard, F.S.K. and Kolstein, H. (2016), "Mechanical properties and design recommendations of very high strength steel S960 in fire", Eng. Struct., 112, 60-70. https://doi.org/10.1016/j.engstruct.2016.01.008
- Rasmussen, K.J.R. and Hancock, G.J. (1988), "Deformations and residual stresses induced in channel section columns by presetting and welding", J. Constr. Steel Res., 11(3), 175-204. https://doi.org/10.1016/0143-974X(88)90041-7
- Saliba, N.G., Tawk, I. and Gergess, A.N. (2018), "Finite element modeling of rolled steel shapes subjected to weak axis bending", Steel Compos. Struct., Int. J., 29(2), 161-173. https://doi.org/10.12989/scs.2018.29.2.161
- Somodi, B. and Kovesdi, B. (2017), "Residual stress measurements on cold-formed HSS hollow section columns", J. Constr. Steel Res., 128, 706-720. https://doi.org/10.1016/j.jcsr.2016.10.008
- Somodi, B. and Koevesdi, B. (2018), "Residual stress measurements on welded square box sections using steel grades of S235-S960", Thin-Wall. Struct., 123, 142-154. https://doi.org/10.1016/j.tws.2017.11.028
- Taheri-Behrooz, F., Aliha, M.R.M., Maroofi, M. and Hadizadeh, V. (2018), "Residual stresses measurement in the butt joint welded metals using FSW and TIG methods", Steel Compos. Struct., Int. J., 28(6), 759-766. https://doi.org/10.12989/scs.2018.28.6.759
- Tebedge, N., Alpsten, G. and Tall, L. (1973), "Residual-stress measurement by the sectioning method", Experim. Mech., 13(2), 88-96. https://doi.org/10.1007/BF02322389
- Wang, Y.-B., Li, G.-Q. and Chen, S.-W. (2012), "The assessment of residual stresses in welded high strength steel box sections", Journal of Constructional Steel Research. 76, 93-99. https://doi.org/10.1016/j.jcsr.2012.03.025
- Wang, W.Y., Qin, S.Q., Kodur, V. and Wang, Y.H. (2018), "Experimental study on evolution of residual stress in welded box-sections after high temperature exposure", Adv. Steel Constr., 14(1), 73-89. https://doi.org/10.18057/IJASC.2018.14.1.5
- Wang, Z., Deng, L. and Zhao, J. (2019), "A novel method to extract the equi-biaxial residual stress and mechanical properties of metal materials by continuous spherical indentation test", Mater. Res. Express, 6(3), 036512. https://doi.org/10.1088/2053-1591/aaeca6
- Yuan, H.X., Wang, Y.Q., Shi, Y.J. and Gardner, L. (2014), "Residual stress distributions in welded stainless steel sections", Thin-Wall. Struct., 79, 38-51. https://doi.org/10.1016/j.tws.2014.01.022
- Zhang, X., Liu, S., Zhao, M. and Chiew, S.-P. (2016), "Residual stress of cold-formed thick-walled steel rectangular hollow sections", Steel Compos. Struct., Int. J., 22(4), 837-853. https://doi.org/10.12989/scs.2016.22.4.837
- Zhang, X., Huang, Z., Chen, B., Zhang, Y., Tong, J., Fang, G. and Duan, S. (2019), "Investigation on residual stress distribution in thin plate subjected to two sided laser shock processing", Optics Laser Technol., 111, 146-155. https://doi.org/10.1016/j.optlastec.2018.09.035
Cited by
- Energy factor of high-strength-steel frames with energy dissipation bays under repeated near-field earthquakes vol.40, pp.3, 2019, https://doi.org/10.12989/scs.2021.40.3.369
- Experimental study on post-fire mechanical performances of high strength steel Q460 vol.24, pp.12, 2019, https://doi.org/10.1177/13694332211010601