References
- Ali, S.R., Muthuvelayudham, R., Viruthagiri, T. 2013. Enhanced production of cellulase from tapioca stem using response surface methodology. Innovative Romanian Food Biotechnology 12(March): 40-51.
- Biswas, A.K., Umeki, K., Yang, W., Blasiak, W. 2011. Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Processing Technology 92(10): 1849-1854. https://doi.org/10.1016/j.fuproc.2011.04.038
- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Castellanos, O.F., Sinitsyn, A.P., Vlasenko, E.Y. 1995. Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Bioresource Technology 52(2): 119-124. https://doi.org/10.1016/0960-8524(95)00011-3
- Delabona, P.d.S., Farinas, C.S., da Silva, M.R., Azzoni, S.F., Pradella, J.G.d.C. 2012. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresource Technology 107: 517-521. https://doi.org/10.1016/j.biortech.2011.12.048
- Esterbauer, H., Steiner, W., Labudova, I., Hermann, A., Hayn, M. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technology 36(1): 51-65. https://doi.org/10.1016/0960-8524(91)90099-6
- Fang, H., Zhao, C., Song, X.-Y. 2010. Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reeseiRUT-C30 and Aspergillus niger NL02. Bioresource Technology 101(11): 4111-4119. https://doi.org/10.1016/j.biortech.2010.01.078
- Gao, D., Haarmeyer, C., Balan, V., Whitehead, T.A., Dale, B.E., Chundawat, S.P.S. 2014. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnology for Biofuels 7(1): 175. https://doi.org/10.1186/s13068-014-0175-x
- Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., Xi, Y. 2008. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technology 99(16): 7623-7629. https://doi.org/10.1016/j.biortech.2008.02.005
- Goldbeck, R., Ramos, M.M., Pereira, G.A.G., Maugeri-Filho, F. 2013. Cellulase production from a new strain Acremonium strictumisolated from the Brazilian biome using different substrates. Bioresource Technology 128: 797-803. https://doi.org/10.1016/j.biortech.2012.10.034
- Goyal, A., Ghosh, B., Eveleigh, D. 1991. Characteristics of fungal cellulases. Bioresource Technology 36(1): 37-50. https://doi.org/10.1016/0960-8524(91)90098-5
- Haigler, C.H., Weimer, P.J. 1991. Biosynthesis and biodegradation of cellulose. Marcel Dekker New York.
- Hong, J., Tamaki, H., Akiba, S., Yamamoto, K., Kumagai, H. 2001. Cloning of a gene encoding a highly stable endo-a-1, 4-glucanase from Aspergillus nigerand its expression in yeast. Journal of Bioscience and Bioengineering 92(5): 434-441. https://doi.org/10.1016/S1389-1723(01)80292-9
- Howard, R., Abotsi, E., Jansen van Rensburg, E. 2002. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology 2(12): 602-619. https://doi.org/10.5897/AJB2003.000-1115
- Jorgensen, H., Eriksson, T., Börjesson, J., Tjerneld, F., Olsson, L. 2003. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme and Microbial Technology 32(7): 851-861. https://doi.org/10.1016/S0141-0229(03)00056-5
- Jamshidian, H., Shojaosadati, S.A., Vilaplana, F., Mousavi, S.M., Soudi, M.R. 2016. Characterization and optimization of schizophyllan production from date syrup. International Journal of Biological Macromolecules 92: 484-493. https://doi.org/10.1016/j.ijbiomac.2016.07.059
- Kim, J.Y., Yoon, S.M., Kim, Y.S. 2015a. Cellulase Activity of Symbiotic Bacteria from Snails, Achatina fulica. Journal of the Korean Wood Science and Technology 43(5): 628-640. https://doi.org/10.5658/WOOD.2015.43.5.628
- Kim, Y.S., Kim, T.J., Shin, K., Yoon, S.M. 2015b. Novel Acanthophysiumsp. KMF001 having high cellulase activity. US patent Application number: 14/930585.
- Kurabi, A., Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Robinson, J., Markov, A., Skomarovsky, A., Gusakov, A., Okunev, O., Sinitsyn, A., Gregg, D., Xie, D., Saddler, J. 2005. Enzymatic hydrolysis of steam-exploded and ethanol organosolv-pretreated douglas-fir by novel and commercial fungal cellulases. Applied Biochemistry and Biotechnology 121(1): 219-230. https://doi.org/10.1385/ABAB:121:1-3:0219
- Leathers, T.D., Sutivisedsak, N., Nunnally, M.S., Price, N.P.J., Stanley, A.M. 2015. Enzymatic modification of schizophyllan. Biotechnology Letters 37(3): 673-678. https://doi.org/10.1007/s10529-014-1707-y
- Lee, B.-H., Kim, B.-K., Lee, Y.-J., Chung, C.-H., Lee, J.-W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme and Microbial Technology 46(1): 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
- Li, Y.-H., Ding, M., Wang, J., Xu, G.-j., Zhao, F. 2006. A novel thermoacidophilic endoglucanase, Ba- EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Applied Microbiology and Biotechnology 70(4): 430-436. https://doi.org/10.1007/s00253-005-0075-x
- Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153(2): 375-380. https://doi.org/10.1016/S0021-9258(18)71980-7
- Pandey, A., Webb, C., FERNANDES, M., Larroche, C. 2006. Enzyme Technology. Springer-Verlag New York Inc., New York.
- Rosgaard, L., Pedersen, S., Cherry, J.R., Harris, P., Meyer, A.S. 2006. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress 22(2): 493-498. https://doi.org/10.1021/bp050361o
- Schulein, M. 1988. Cellulases of Trichoderma reesei, Methods in Enzymology (vol. 160. pp. 234-242), Academic Press.
- Shin, K., Yoon, S.-M., Kim, J.H., Kim, Y.-K., Kim, T.-J., Kim, Y.-S. 2016. Biopolishing of cotton fabric using crude cellulases from Acanthophysium sp. KMF001. Journal of the Korean Wood Science and Technology 44(3): 381-388. https://doi.org/10.5658/WOOD.2016.44.3.381
- Smits, J.P., Rinzema, A., Tramper, J., Sonsbeek, H.M.V., Knol, W. 1996. Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: substrate composition changes, C balance, enzyme production, growth and kinetics. Applied Microbiology and Biotechnology 46(5): 489-496. https://doi.org/10.1007/s002530050849
- Sutivisedsak, N., Leathers, T.D., Bischoff, K.M., Nunnally, M.S., Peterson, S.W. 2013. Novel sources of a-glucanase for the enzymatic degradation of schizophyllan. Enzyme and Microbial Technology 52(3): 203-210. https://doi.org/10.1016/j.enzmictec.2012.12.002
- Tamura, K., Dudley, J., Nei, M., Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24(8): 1596-1599. https://doi.org/10.1093/molbev/msm092
- Yoon, S.-M., Kim, Y.-S., Kim, Y.-K., Kim, T.-J. 2018. A novel endo-a-1,4-xylanase from Acanthophysium sp. KMF001, a wood rotting fungus. Journal of the Korean Wood Science and Technology 46(6): 670-680. https://doi.org/10.5658/WOOD.2018.46.6.670
- Zhang, H., Sang, Q., Zhang, W. 2012. Statistical optimization of cellulases production by Aspergillus nigerHQ-1 in solid-state fermentation and partial enzymatic characterization of cellulases on hydrolyzing chitosan. Annals of Microbiology 62(2): 629-645. https://doi.org/10.1007/s13213-011-0300-z
- Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R. 2009. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology 100(8): 2411-2418. https://doi.org/10.1016/j.biortech.2008.10.057