• Title/Summary/Keyword: Ranging

Search Result 7,107, Processing Time 0.045 seconds

Performance Analysis of Ranging Techniques for the KPLO Mission

  • Park, Sungjoon;Moon, Sangman
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • In this study, the performance of ranging techniques for the Korea Pathfinder Lunar Orbiter (KPLO) space communication system is investigated. KPLO is the first lunar mission of Korea, and pseudo-noise (PN) ranging will be used to support the mission along with sequential ranging. We compared the performance of both ranging techniques using the criteria of accuracy, acquisition probability, and measurement time. First, we investigated the end-to-end accuracy error of a ranging technique incorporating all sources of errors such as from ground stations and the spacecraft communication system. This study demonstrates that increasing the clock frequency of the ranging system is not required when the dominant factor of accuracy error is independent of the thermal noise of the ranging technique being used in the system. Based on the understanding of ranging accuracy, the measurement time of PN and sequential ranging are further investigated and compared, while both techniques satisfied the accuracy and acquisition requirements. We demonstrated that PN ranging performed better than sequential ranging in the signal-to-noise ratio (SNR) regime where KPLO will be operating, and we found that the T2B (weighted-voting balanced Tausworthe, voting v = 2) code is the best choice among the PN codes available for the KPLO mission.

Packet-Reduced Ranging Method with Superresolution TOA Estimation Algorithm for Chirp-Based RTLS

  • Oh, Daegun;Go, Seungryeol;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.361-370
    • /
    • 2013
  • In this paper, a packet-reduced ranging method using a superresolution time of arrival estimation algorithm for a chirp-based real-time locating system is presented. A variety of ranging methods, such as symmetric double-sided two-way ranging (SDS-TWR), have been proposed to remove the time drift due to the frequency offset using extra ranging packets. Our proposed method can perform robust ranging against the frequency offset using only two ranging packets while maintaining almost the same ranging accuracy as them. To verify the effectiveness of our proposed algorithm, the error performance of our proposed ranging method is analyzed and compared with others. The total ranging performance of TWR, SDS-TWR, and our proposed TWR are analyzed and verified through simulations in additive white Gaussian noise and multipath channels in the presence of the frequency offset.

Mathematical Derivation of Ranging Collision Probability and Period in WiBro System

  • Lee, Dong-Yun;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.982-987
    • /
    • 2006
  • In this paper, ranging code collision probability and ranging period which are two important performance measures for code division multiple access (CDMA)-type ranging in wireless broadband (WiBro) system are mathematically derived. Based on the analysis, the appropriate ranging management solution for maintaining the ranging collision probability below a certain threshold level and correctly recognizing the transmitted ranging code against propagation delay is obtained in terms of the number of ranging codes, the number of ranging regions, and ranging period. In this analysis, user mobility features such as speed and moving direction are also considered.

Ranging Data Accuracy in K13 S-Band Antenna

  • Ahn Sang-il;Park Dong-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.464-466
    • /
    • 2004
  • Ranging and 2-way Doppler measurements are very essential source for orbit determination in LEOP (Launch and Early Operation). This paper shows ranging system features of 13M TT &C antenna and test results recently acquired with KOMPSAT-l. Ranging and 2-way Doppler measurements were compared with KOMPSAT-I GPS telemetry data. Through comparison, it was found that constant and accurate ranging measurements are available with 13M antenna system. Ranging and Doppler measurement function is expected to be used for KOMPSAT-1 and KOMPSAT-2.

  • PDF

Active One-Way Ranging Method based on Post-Facto Wireless Synchronization in Wireless Sensor Networks (무선 센서망에서의 사후 무선동기 기반 능동형 단반향 거리추정 방식)

  • Nam, Yoon-Seok;Bae, Byoung-Chul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.234-242
    • /
    • 2010
  • Two-way ranging methods such as TWR and SDS-TWR have been considered for many ranging systems because these methods are useful in the absence of synchronization. To estimate the location of a mobile node, complicated ranging procedures consisting of ranging frames between an anchor node and the mobile node are performed. Supporting multiple mobile nodes such as a few hundreds or thousands and several anchor nodes, the ranging procedures have the fatal disadvantage of processing delay and inefficient traffic bandwidth. On the other hand, the one-way ranging method is simple and fast, but susceptible to network synchronization. In this paper, we propose a method to modify asynchronous ranging equations to establish exact frequency or frequency offset, a method to estimate frequencies or frequency offsets, and a method to establish post-facto synchronization with anchor nodes. The synchronization for a node pair is adapted using instantaneous time information and corresponding difference of distances can be determined. We evaluate the performance of TWR, SDS-TWR and proposed ranging algorithms.

Link Performance of an CDMA-Based Time-of-Flight Ranging by Using LED Visible Light

  • Wang, Yang;Liang, Chengchao;Su, Xin;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.834-840
    • /
    • 2012
  • The use of ranging sensors on automobiles is becoming common with the desire of traffic safety by providing drivers the information of the relative distance between the vehicles. In this paper, the LED visible light ranging system different from the conventional ranging systems using the RF signal is investigated. For such a system, we propose a novel ranging algorithm which combines the time-of-flight (TOF) with the CDMA technology. Via the CDMA technology, the TOF ranging system can accurately distinguish the desired ranging signal from the visible light interferences of the neighbor vehicles. In addition, the proposed system can also overcome the light noise from other luminaries, i.e. sun-light, traffic-light, and so on. The simulation results show that the CDMA-based LED ranging system has a significant improvement for the ranging accuracy compared with the case without employing the CDMA.

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission

  • Kim, Pureum;Park, Sang-Young;Kang, Dae-Eun;Lee, Youngro
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.243-252
    • /
    • 2018
  • In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.

Initial Ranging and Detection Enhacement and Time Offset Calculation for Synchronization in 802.16e Systems by Hybrid Detection Method (802.16e 시스템에서 동기화를 위하여 hybrid detection을 이용한 Initial ranging detection 향상과 time offset 계산)

  • Afzal, M Usman;Park, Jong-Min;Cho, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.159-160
    • /
    • 2008
  • Initial Ranging Detection and Synchronization is suggested for IEEE 802.16e OFDMA Systems. However ranging is vulnerable to the channel selectivity and other user's interference at low SNR. This paper presents enhanced ranging scheme that improves ranging detection process using the combine multiple FFT blocks and cope with channel selectivity and other user's interference at low SNR. Based on the ranging detection timing offset is calculated for synchronization.

  • PDF

Development of Omnidirectional Ranging System Based on Structured Light Image (구조광 영상기반 전방향 거리측정 시스템 개발)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.479-486
    • /
    • 2012
  • In this paper, a ranging system is proposed that is able to measure 360 degree omnidirectional distances to environment objects. The ranging system is based on the structured light imaging system with catadioptric omnidirectional mirror. In order to make the ranging system robust against environmental illumination, efficient structured light image processing algorithms are developed; sequential integration of difference images with modulated structured light and radial search based on Bresenham line drawing algorithm. A dedicated FPGA image processor is developed to speed up the overall image processing. Also the distance equation is derived in the omnidirectional imaging system with a hyperbolic mirror. It is expected that the omnidirectional ranging system is useful for mapping and localization of mobile robot. Experiments are carried out to verify the performance of the proposed ranging system.

Performance Analysis of the Ranging Protocol for the ATM-PON based on ITU-T G.983.1 (G.983.1 기반의 ATM-PON에서 Ranging 프로토콜 성능 분석)

  • Hwang, Kye-Won;Chung, Hae;Kim, Jin-Hee;Koh, Sang-Ho;Yoo, Gun-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.6A
    • /
    • pp.1078-1088
    • /
    • 2001
  • ATM-PON (Asynchronous Transfer Mode Passive Optical Network)에는 두 가지 핵심 기술이 있는데 ranging 프로토콜과 MAC (Medium Access Control) 프로토콜이 그것이다. Ranging 프로토콜은 시간 분할 다중화(Time Division Multiple Access, TDMA) 방식을 사용하는 ATM-PON에서 상향으로 액세스할 때 타임 슬롯의 동기를 유지하게 하기 위해 ONU (Optical Network Unit)를 가상적으로 동일한 거리에 놓는 기술이다. 본 논문에서는 FSAN (Full Service Access Network)과 ITU-T를 중심으로 표준화된 G.983.1의 ranging 프로토콜에 관하여 연구하고 성능분석과 모의실험을 수행한다. 이를 통하여 ranging을 하는데 걸리는 소요시간이 표준안의 권고사항을 만족시키기 위한 필요조건을 도출할 수 있다. 특히 ranging을 할 때 윈도우의 길이를 줄일 수 있는 새로운 방식을 적용하여, 이미 서비스 중에 있는 ONU의 서비스 품질이 저하되는 것을 막을 수 있음을 보여준다.

  • PDF