DOI QR코드

DOI QR Code

Permanent Magnet Synchronous Motor Control Algorithm Based on Stability Margin and Lyapunov Stability Analysis

  • Jie, Hongyu (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Xu, Hongbing (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Zheng, Yanbing (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Xin, Xiaoshuai (School of Automation Engineering, University of Electronic Science and Technology of China) ;
  • Zheng, Gang (School of Automation Engineering, University of Electronic Science and Technology of China)
  • Received : 2019.03.01
  • Accepted : 2019.06.03
  • Published : 2019.11.20

Abstract

The permanent magnet synchronous motor (PMSM) is widely used in various fields and the proportional-integral (PI) controller is popular in PMSM control systems. However, the motor parameters are usually unknown, which can lead to a complicated PI controller design and poor performance. In order to design a PI controller with good performance when the motor parameters are unknown, a control algorithm based on stability margin is proposed in this paper. First of all, based on the mathematical model of the PMSM and the least squares (LS) method, motor parameters are estimated offline. Then based on the estimation values of the motor parameters, natural angular frequency and phase margin, a PI controller is designed. Performance indices including the natural angular frequency and the phase margin are used directly to design the PI controller in this paper. Scalar functions of the d-loop and the q-loop are selected. It can be seen that the designed controller parameters satisfy Lyapunov large scale asymptotic stability theory if the natural angular frequencies of the d-loop and the q-loop are large than 0. Experimental results show that the parameter estimation method has good accuracy and the designed PI controller proposed in this paper has good static and dynamic performances.

Keywords

References

  1. Y. Cho, K. B. Lee, J. H. Song, and Y. I. Lee, "Torque-ripple minimization and fast dynamic scheme for torque predictive control of permanent-magnet synchronous motors," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 2182-2190, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2326192
  2. Y. Zhou, H. Li, and H. Zhang, “Model-free deadbeat predictive current control of a surface-mounted permanent magnet synchronous motor drive system,” J. Power Electron., Vol. 18, No. 1, pp. 103-115, Jan. 2018. https://doi.org/10.6113/JPE.2018.18.1.103
  3. R. Ni, D. Xu, G. Wang, L. Ding, G. Zhang, and L. Qu, "Maximum efficiency per ampere control of permanent-magnet synchronous machines," IEEE Trans. Ind. Electron., Vol. 62, No. 4, pp. 2135-2143, Apr. 2015. https://doi.org/10.1109/TIE.2014.2354238
  4. L. Wang, K. Xiao, L. De Lillo, L. Empringham, and P. Wheeler, “PI controller relay auto-tuning using delay and phase margin in PMSM drives,” Chin. J. Aeronaut., Vol. 27, No. 6, pp. 1527-1537, Dec. 2014. https://doi.org/10.1016/j.cja.2014.10.019
  5. B. Saidi, M. Amairi, S. Najar, and M. Aoun, “Bode shaping-based design methods of a fractional order PID controller for uncertain systems,” Nonlinear Dyn., Vol. 80, No. 4, pp. 1817-1838, Jun. 2015. https://doi.org/10.1007/s11071-014-1698-1
  6. A. S. Bazanella, L. F. A. Pereira, and A. Parraga, “A new method for PID tuning including plants without ultimate frequency,” IEEE Trans. Control Syst. Technol., Vol. 25, No. 2, pp. 637-644, Mar. 2017. https://doi.org/10.1109/TCST.2016.2557723
  7. F. Haugen and B. Lie, “Relaxed Ziegler-Nichols closed loop tuning of PI controllers,” Modeling Identification and Control, Vol. 34, No. 2, pp. 83-97, Feb. 2013. https://doi.org/10.4173/mic.2013.2.4
  8. D. Valerio and J. S. Da Costa, "Tuning of fractional PID controllers with Ziegler-Nichols-type rules," Signal Process., Vol. 86, No. 10, pp. 2771-2784, Oct. 2006. https://doi.org/10.1016/j.sigpro.2006.02.020
  9. N. Merayo, D. Juarez, J. C. Aguado, I. De Miguel, R. J. Duran, P. Fernandez, R. Mateo Lorenzo, and E. J. Abril, "PID controller based on a self-adaptive neural network to ensure QoS bandwidth requirements in passive optical networks," J. Opt. Commun. Networking, Vol. 9, No. 5, pp. 433-445, May 2017. https://doi.org/10.1364/JOCN.9.000433
  10. J. Yu, P. Shi, W. Dong, B. Chen, and C. Lin, “Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors,” IEEE Trans. Neural Networks Learn. Syst., Vol. 26, No. 3, pp. 640-645, Mar. 2014. https://doi.org/10.1109/TNNLS.2014.2316289
  11. M. H. Chebre, A. Meroufel, and Y. Bendaha, “Speed control of induction motor using genetic algorithm-based PI controller,” Acta Polytechnica Hungarica, Vol. 8, No. 6, pp. 141-153, 2011.
  12. J. W. Perng, S. C. Hsieh, L. S. Ma, and G. Y. Chen, “Design of robust PI control systems based on sensitivity analysis and genetic algorithms,” Neural Comput. Appl., Vol. 29, No. 4, pp. 913-923, Jul. 2016. https://doi.org/10.1007/s00521-016-2506-2
  13. S. Li and H. Gu, “Fuzzy adaptive internal model control schemes for PMSM speed-regulation system,” IEEE Trans. Ind. Informat, Vol. 8, No. 4, pp. 767-779, Jun. 2012. https://doi.org/10.1109/TII.2012.2205581
  14. K. Devi, S. Gautam, and D. Nagaria, “Speed control of 3-phase induction motor using self-tuning fuzzy PID controller and conventional PID controller,” Int. J. Inform. Commun. Technol., Vol. 4, No. 12, pp. 1185-1193, 2014.
  15. A. S. Oshaba, E. S. Ali, and S. M. Abd Elazim, “PI controller design using artificial bee colony algorithm for MPPT of photovoltaic system supplied DC motor‐pump load,” Complexity, Vol. 21, No. 6, pp. 99-111, Mar. 2016. https://doi.org/10.1002/cplx.21670
  16. G. Durgasukumar, T. R. S. Redddy, and B. Pakkiraiah, “PID controller tuning using co-efficient diagram method for indirect vector controlled drive,” J. Electr. Eng. Technol., Vol. 12, No. 5, pp. 1821-1834, Sep. 2017. https://doi.org/10.5370/JEET.2017.12.5.1821
  17. J. Xi, Z. Dong, Y. Ding, P. Liu, and H. Ding, "An adaptive 2DoF P-PI controller based on an improved just-in-time learning technique for ultra-low-velocity linear stages driven by PMLSMs," Precision Eng., Vol. 52, pp. 392-406, Apr. 2018. https://doi.org/10.1016/j.precisioneng.2018.01.009
  18. S. Zheng, X. Tang, B. Song, S. Lu, and B. Ye, “Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique,” ISA Trans., Vol. 52, No. 4, pp. 539-549, Jul. 2013. https://doi.org/10.1016/j.isatra.2013.03.002
  19. S. M. Gadoue, D. Giaouris, and J. W. Finch, “MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms,” IEEE Trans. Energy Convers., Vol. 25, No. 2, pp. 394-402, Jun. 2010. https://doi.org/10.1109/TEC.2009.2036445
  20. C. Zhong and Y. Lin, “Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor,” Int. J. Electron., Vol. 104, No. 11, pp. 1854-1873, Apr. 2017. https://doi.org/10.1080/00207217.2017.1329946
  21. T. Boileau, N. Leboeuf, B. Nahid-Mobarakeh, and F. Meibody-Tabar, “Online identification of PMSM parameters: Parameter identifiability and estimator comparative study,” IEEE Trans. Ind. Appl., Vol. 47, No. 4, pp. 1944-1957, Jul. 2011. https://doi.org/10.1109/TIA.2011.2155010
  22. Y. Shi, K. Sun, L. Huang, and Y. Li, “Online identification of permanent magnet flux based on extended Kalman filter for IPMSM drive with position sensorless control,” IEEE Trans. Ind. Electron., Vol. 59, No. 11, pp. 4169-4178, Nov. 2012. https://doi.org/10.1109/TIE.2011.2168792
  23. K. Liu, Q. Zhang, J. Chen, Z. Q. Zhu, and J. Zhang, “Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking,” IEEE Trans. Ind. Electron., Vol. 58, No. 5, pp. 1776-1788, May 2011. https://doi.org/10.1109/TIE.2010.2054055
  24. K. Liu , Z. Q. Zhu, and D. A. Stone, “Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets,” IEEE Trans. Ind. Electron., Vol. 60, No. 12, pp. 5902-5913, Dec. 2013. https://doi.org/10.1109/TIE.2013.2238874
  25. K. H. Kim, S. K. Chung, G. W. Moon, I. C. Baik, and M. J. Youn, "Parameter estimation and control for permanent magnet synchronous motor drive using model reference adaptive technique," in Proc. IECON, pp. 387-392, 1995.
  26. Z. H. Liu, J. Zhang, X. H. Li, and Y. J. Zhang, “Immune co-evolution particle swarm optimization for permanent magnet synchronous motor parameter identification,” Acta Autom. Sin., Vol. 38, No. 10, pp. 1698-1708, 2012. https://doi.org/10.3724/SP.J.1004.2012.01698
  27. K. Wang, J. Chiasson, M. Bodson, and L. M. Tolbert, “A nonlinear least-squares approach for identification of the induction motor parameters,” IEEE Trans. Autom. Contr., Vol. 50, No. 10, pp. 1622-1628, Oct. 2005. https://doi.org/10.1109/TAC.2005.856661
  28. Y. Wang, S. Xu, H. Huang, Y. Guo, and H. Jin, “A coupled recursive total least squares-based online parameter estimation for PMSM,” J. Electr. Eng. Technol., Vol. 13, No. 6, pp. 2344-2353, Nov. 2018. https://doi.org/10.5370/JEET.2018.13.6.2344
  29. Z. Shi, Y. Wang, and Z. Ji, "Bias compensation based partially coupled recursive least squares identification algorithm with forgetting factors for MIMO systems: Application to PMSMs," J. Franklin Inst., Vol. 353, No. 13, pp. 3057-3077, Sep. 2016. https://doi.org/10.1016/j.jfranklin.2016.05.021