DOI QR코드

DOI QR Code

Two Modified Z-Source Inverter Topologies - Solutions to Start-Up Dc-Link Voltage Overshoot and Source Current Ripple

  • Bharatkumar, Dave Heema (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science) ;
  • Singh, Dheerendra (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science) ;
  • Bansal, Hari Om (Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science)
  • Received : 2018.11.26
  • Accepted : 2019.06.11
  • Published : 2019.11.20

Abstract

This paper proposes two modified Z-source inverter topologies, namely an embedded L-Z-source inverter (EL-ZSI) and a coupled inductor L-Z source inverter (CL-ZSI). The proposed topologies offer a high voltage gain with a reduced passive component count and reduction in source current ripple when compared to conventional ZSI topologies. Additionally, they prevent overshoot in the dc-link voltage by suppressing heavy inrush currents. This feature reduces the transition time to reach the peak value of the dc-link voltage, and reduces the risk of component failure and overrating due to the inrush current. EL-ZSI and CL-ZSI possess all of the inherent advantages of the conventional L-ZSI topology while eliminating its drawbacks. To verify the effectiveness of the proposed topologies, MATLAB/Simulink models and scaled down laboratory prototypes were constructed. Experiments were performed at a low shoot through duty ratio of 0.1 and a modulation index as high as 0.9 to obtain a peak dc-link voltage of 53 V. This paper demonstrates the superiority of the proposed topologies over conventional ZSI topologies through a detailed comparative analysis. Moreover, experimental results verify that the proposed topologies would be advantageous for renewable energy source applications since they provide voltage gain enhancement, inrush current, dc-link voltage overshoot suppression and a reduction of the peak to peak source current ripple.

Keywords

References

  1. F. Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504-510, Mar. 2003. https://doi.org/10.1109/TIA.2003.808920
  2. J. Anderson and F. Z. Peng, "Four quasi-Z-Source inverters," PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., pp. 2743-2749, 2008.
  3. P. C. Loh, F. Gao, and F. Blaabjerg, “Embedded EZ-source inverters,” IEEE Trans. Ind. Appl., Vol. 46, No. 1, pp. 256-267, Jan. 2010. https://doi.org/10.1109/TIA.2009.2036508
  4. A. Battiston, E.-H. Miliani, S. Pierfederici, and F. Meibody-Tabar, “A novel quasi-Z-source inverter topology with special coupled inductors for input current ripples cancellation,” IEEE Trans. Power Electron., Vol. 31, No. 3, pp. 2409-2416, Mar. 2016. https://doi.org/10.1109/TPEL.2015.2429593
  5. M. Zhu, K. Yu, and F. L. Luo, “Switched inductor Z-Source inverter,” IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 2150-2158, Aug. 2010. https://doi.org/10.1109/TPEL.2010.2046676
  6. M. Nguyen, Y. Lim, and G. Cho, “Switched-inductor quasi-Z-source inverter,” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3183-3191, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2141153
  7. Y.-C. Lim, M.-K. Nguyen, and J.-H. Choi, “Two switched-inductor quasi-Z-source inverters,” IET Power Electron., Vol. 5, No. 7, pp. 1017-1025, Apr. 2012. https://doi.org/10.1049/iet-pel.2011.0297
  8. M. Nguyen, Y. Lim, Y. Chang, and C. Moon, “Embedded switched-inductor Z-source inverters,” J. Power Electron., Vol. 13, No. 1, pp. 9-19, Jan. 2013. https://doi.org/10.6113/JPE.2013.13.1.9
  9. K. Deng, J. Zheng, and J. Mei, “Novel switched-inductor quasi-Z-source inverter,” J. Power Electron., Vol. 14, No. 1, pp. 11-21, Jan. 2014. https://doi.org/10.6113/JPE.2014.14.1.11
  10. Z. Inverter, A. Bakeer, M. A. Ismeil, M. Orabi, and I. S. Member, "A modified two switched-inductors quasi Z-source inverter," 2015 IEEE Appl. Power Electron. Conf. Expo., pp. 1693-1699, 2015.
  11. M. Abbasi, A. H. Eslahchi, and M. Mardaneh, “Two symmetric extended-boost embedded switched-inductor quasi-Z-source inverter with reduced ripple continuous input current,” IEEE Trans. Ind. Electron., Vol. 65, No. 6, pp. 5096-5104, Jun. 2018. https://doi.org/10.1109/TIE.2017.2779433
  12. H. F. Ahmed, H. Cha, S. Kim, H. Kim, and S. Member, “switched-coupled-inductor quasi-Z-source inverter,” IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1241-1254, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2414971
  13. S. Sharifi, M. Monfared, and S. Member, "Modified series and tapped switched- coupled-inductors quasi-Z-source networks," IEEE Trans. Ind. Electron., Vol. 66 No. 8, pp. 5970-5978, Sep. 2018. https://doi.org/10.1109/tie.2018.2870364
  14. R. Strzelecki, M. Adamowicz, N. Strzelecka, and W. Bury, "New type T-source inverter," 2009 Compat. Power Electron., pp. 191-195, 2009.
  15. W. Qian, F. Z. Peng, and H. Cha, “Trans-Z-source inverters,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3453-3463, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2122309
  16. A. Hakemi, M. Sanatkar-Chayjani, and M. Monfared, "$\Delta$-source impedance network," IEEE Trans. Ind. Electron., Vol. 64, No. 10, pp. 7842-7851, Oct. 2017. https://doi.org/10.1109/TIE.2017.2698421
  17. Y. P. Siwakoti, P. C. Loh, F. Blaabjerg, and G. E. Town, “Y-source impedance network,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3250-3254, Jul. 2014. https://doi.org/10.1109/TPEL.2013.2296517
  18. M. K. Nguyen, T. V. Le, S. J. Park, and Y. C. Lim, “A class of quasi-switched boost inverters,” IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1526-1536, Mar. 2015. https://doi.org/10.1109/TIE.2014.2341564
  19. X. Zhu, B. Zhang, and D. Qiu, "Enhanced boost quasi-Z-source inverters with active switched-inductor boost network," IET Power Electron., Vol. 11, No.11, pp. 1774-1787, Aug. 2018. https://doi.org/10.1049/iet-pel.2017.0844
  20. E. S. Asl, E. Babaei, M. Sabahi, M. Hasan, B. Nozadian, and C. Cecati, “New half-bridge and full-bridge topologies for a switched-boost inverter with continuous input current,” IEEE Trans. Ind. Electron., Vol. 65, No. 4, pp. 3188-3197, Apr. 2018. https://doi.org/10.1109/TIE.2017.2752118
  21. A. Ahmad, V. K. Bussa, S. Member, R. K. Singh, S. Member, and R. Mahanty, "Switched-boost-modified Z-source inverter topologies with improved voltage gain capability," IEEE J. Emerg. Sel. Top. Power Electron., Vol. 6, No. 4, pp. 2227-2244, Dec. 2018. https://doi.org/10.1109/JESTPE.2018.2823379
  22. C. J. Gajanayake, F. L. Luo, H. Gooi, P. L. So, and L. K. Siow, “Extended-boost Z -source inverters,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2642-2652, Oct. 2010. https://doi.org/10.1109/TPEL.2010.2050908
  23. H. Fathi and H. Madadi, “Enhanced-boost z-source inverters with swicthed Z-impedance,” IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 691-703, Feb. 2016. https://doi.org/10.1109/TIE.2015.2477346
  24. V. Jagan, S. Member, J. Kotturu, S. Member, and S. Das, "Enhanced-boost quasi-Z-source inverters with two-switched impedance networks," IEEE Trans. Ind. Electron., Vol. 64, No. 9, pp. 6885-6897, Sep. 2017. https://doi.org/10.1109/TIE.2017.2688964
  25. A.-V. Ho, T.-W. Chun, and H.-G. Kim, “Extended boost active switched capacitor/switched inductor quasi-Z-source inverters,” IEEE Trans. Power Electron., Vol. 30, No. 10, pp. 5681-5690, Oct. 2015. https://doi.org/10.1109/TPEL.2014.2379651
  26. A. Ho and T. Chun, "Topologies of active-switched quasi-Z-source inverters with high-boost capability," J. Power Electron., Vol. 16, No. 5, pp. 1716-1724, Sep. 2016. https://doi.org/10.6113/JPE.2016.16.5.1716
  27. Y. Gu, Y. Chen, and B. Zhang, "Enhanced-boost quasi-Z-source inverter with an active swicthed Z-network," IEEE Trans. Ind. Electron., Vol. 65, No. 10, pp. 8372-8381, Oct. 2018. https://doi.org/10.1109/TIE.2017.2786214
  28. O. Husev, C. Roncero-clemente, E. Romero-cadaval, D. Vinnikov, and T. Jalakas, "Three-level three-phase quasi-Z-source neutral-point-clamped inverter with novel modulation technique for photovoltaic application," Electr. Power Syst. Res., Vol. 130, pp. 10-21, Sep. 2016. https://doi.org/10.1016/j.epsr.2015.08.018
  29. D. Sun, B. Ge, X. Yan, D. Bi, and H. Zhang, "Modeling, impedance design, and efficiency analysis of quasi- Z source module in cascaded multilevel photovoltaic power system," IEEE Trans. Ind. Electron., Vol. 61, No. 11, pp. 6108-6117, Nov. 2014. https://doi.org/10.1109/TIE.2014.2304913
  30. O. Husev, C. Roncero-clemente, E. Romero-cadaval, D. Vinnikov, and S. Stepenko, “Single phase three-level neutral-point-clamped quasi-Z-source inverter,” IET Power Electron., Vol. 8, No. 1, pp. 1-10, 2015. https://doi.org/10.1049/iet-pel.2013.0904
  31. D. Sun, B. Ge, W. Liang, H. Abu-rub, and S. Member, "An energy stored quasi-Z-source cascade multilevel inverter-based photovoltaic power generation system," IEEE Trans. Ind. Electron., Vol. 62, No. 9, pp. 5458-5467, Sep. 2015. https://doi.org/10.1109/TIE.2015.2407853
  32. B. Ge, Y. Liu, H. Abu-rub, and F. Z. Peng, "State-of-charge balancing control for a battery-energy-stored quasi-Z-source cascaded-multilevel-inverter-based photovoltaic power system," IEEE Trans. Ind. Electron., Vol. 65, No. 3, pp. 2268-2279, Mar. 2018. https://doi.org/10.1109/TIE.2017.2745406
  33. M. Aleenejad, H. Mahmoudi, and R. Ahmadi, “A fault-tolerant strategy based on fundamental phase-shift compensation for three-phase multilevel converters with quasi-Z-source networks with discontinuous input current,” IEEE Trans. Power Electron., Vol. 31, No. 11, pp. 7480-7488, Nov. 2016. https://doi.org/10.1109/TPEL.2016.2520884
  34. M. Aleenejad and R. Ahmadi, "Fault-tolerant multilevel cascaded H-bridge inverter using impedance-sourced network," IET Power Electron., Vol. 9, pp. 2186-2195, May 2016. https://doi.org/10.1049/iet-pel.2016.0033
  35. M. Nguyen and T. Tran, "Quasi cascaded h-bridge five-level boost inverter," IEEE Trans. Ind. Electron., Vol. 64, No. 11, pp. 8525-8533, Nov. 2017. https://doi.org/10.1109/TIE.2017.2701770
  36. C. H. F. Inverter and A. Ho, "Single-phase modified quasi-Z-source cascaded hybrid five-level inverter," IEEE Trans. Ind. Electron., Vol. 65, No. 6, pp. 5125-5134, Jun. 2018. https://doi.org/10.1109/TIE.2017.2779419
  37. L. Pan, “L-Z-source inverter,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6534-6543, Dec. 2014. https://doi.org/10.1109/TPEL.2014.2303978
  38. V. K. Bussa, R. K. Singh, and R. Mahanty, "Extendable multicell improved L-Z-source inverter," IEEE Transp. Electrif. Conf., Vol. 1, 2017.
  39. A. K. Chauhan and S. K. Singh, “Integrated dual-output L-Z source inverter for hybrid electric vehicle,” IEEE Trans. Transp. Electrif., Vol. 4, No. 3, pp. 732-743, Sep. 2018. https://doi.org/10.1109/TTE.2018.2846032
  40. D. Singh and A. K. Akkarapaka, "DSP based IFO control of HEV fed through impedance source inverter,"Annu. IEEE India Conf., pp. 1-6, 2013.
  41. A. K. Akkarapaka and D. Singh, "An IFOC-DSVPWM based DC-link voltage compensation of Z-source inverter fed induction motor drive for EVs," Adv. Power Electron., Vol. 2015, pp. 1-14, Jun. 2015. https://doi.org/10.1155/2015/185381
  42. A. K. Akkarapaka and D. Singh, "The IFOC based speed control of induction motor fed by a high performance Z-source inverter," Proc. IEEE Conf. Renew. Energy Res. Appl., pp. 539-543, 2014.
  43. J. O. S. Xuan, K. Y. S. Khan, L. K. Haw, W. N. P. Qin, and M. Dahidah, "CCM and DCM analysis of quasi-Z-source inverter," in IEEE Conference on Energy Conversion (CENCON), pp. 4-9, 2017.
  44. C.-T. Pham, A. Shen, P. Q. Dzung, N. B. Anh, and N. X. Phu, "A comparison of control methods for Z-source inverter," Energy Power Eng., Vol. 4, No. 4, pp. 187-195, Jul. 2012. https://doi.org/10.4236/epe.2012.44026