DOI QR코드

DOI QR Code

Arrayed Tip based Pattern Lithography with Built-in Capacitive Proximal Leveling Sensor

내장형 정전용량 근접 센서를 이용한 다중 팁 기반 패턴 인쇄

  • Han, Yoonsoo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology (Icheon))
  • 한윤수 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2019.10.22
  • Accepted : 2019.10.29
  • Published : 2019.10.31

Abstract

To increase the throughput of tip-based nanolithography (TBN), one approach is to use a large array of such tips working in parallel. It is important to maintain co-planarity between the tip array and the writing surface. A slight misalignment can cause large discrepancies of contact force and feature sizes. We report a capacitive proximity sensor built-in with the TBN array for leveling an arrayed polymer pen array. The device allows alignment between an array of writing tips and the writing substrate without contact and contamination. The angular sensitivity of the sensor is $0.05^{\circ}$ for an array with maximum tip-to-tip separation of 100 mm.

Keywords

References

  1. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49 (1982) 57-61. https://doi.org/10.1103/PhysRevLett.49.57
  2. G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope. Phys. Rev. Lett., 56 (1986) 930-933. https://doi.org/10.1103/PhysRevLett.56.930
  3. D. M. Eigler, and E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope. Nature, 344 (1990) 524-526. https://doi.org/10.1038/344524a0
  4. P. S. Weiss, and D. M. Eigler, Adsorption and accomodation of Xe on Pt{111}. Phys. Rev. Lett., 69 (1992) 2240-2243. https://doi.org/10.1103/PhysRevLett.69.2240
  5. S. C. Minne, S. R. Manalis, A. Atalar, and C. F. Quate, Independent parallel lithography using the atomic force microscope. J. Vac. Sci. Technol., 14 (1996) 2456-2461. https://doi.org/10.1116/1.588753
  6. R. Maoz, S. R. Cohen, and J. Sagiv, Nanoelectrochemical patterning of monolayer surfaces: toward spatially defined self-assembly of nanostructures. Adv. Mater., 11 (1999) 55-61. https://doi.org/10.1002/(SICI)1521-4095(199901)11:1<55::AID-ADMA55>3.0.CO;2-8
  7. G. Y. Liu, S. Xu, and Y. Qian, Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res., 33 (2000) 457-466 https://doi.org/10.1021/ar980081s
  8. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, "Dip-Pen" Nanolithography. Science, 283 (1999) 661-663. https://doi.org/10.1126/science.283.5402.661
  9. S. C. Minne, G. Yaralioglu, S. R. Manalis, J. D. Adams, J. Zesch, A. Atalar, and C. F. Quate, Automated parallel high-speed atomic force microscopy. Appl. Phys. Lett., 72 (1998) 2340-2342. https://doi.org/10.1063/1.121353
  10. X. Wang, and C. Liu, Multifunctional probe array for nano patterning and imaging. Nano letters, 5 (2005) 1867-1872. https://doi.org/10.1021/nl051016w
  11. K. Salaita, S. W. Lee, X. Wang, L. Huang, T. M. Dellinger, C. Liu, and C. A. Mirkin, Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small, 1 (2005) 940-945. https://doi.org/10.1002/smll.200500202
  12. K. Salaita, Y. Wang, J. Fragala, and C. A. Mirkin, Massively Parallel Dip-Pen Nanolithography with 55000-Pen Two-Dimensional Arrays. Angew. Chem. Int. Ed, 45 (2006) 7220-7223. https://doi.org/10.1002/anie.200603142
  13. C. A. Mirkin, The power of the pen: development of massively parallel dip-pen nanolithography. ACS Nano, 1 (2007) 79-83. https://doi.org/10.1021/nn700228m
  14. C. Liu and R. Gamble, Mass-producible monolithic silicon probes for scanning probe microscopes. Sensors and Actuators A: Physical, 71(1998) 233-237. https://doi.org/10.1016/S0924-4247(98)00182-4
  15. X. Wang, D. A. Bullen, J. Zou, and C. Liu, Thermally actuated probe array for parallel dippen nanolithgraphy. J. Vac. Sci. Technol., 22 (2004) 2563-2567. https://doi.org/10.1116/1.1805544
  16. X. Wang, K. S. Ryu, D. A. Bullen, J. Zou, H. Zhang, C. A. Mirkin, and C. Liu, Scanning probe contact printing. Langmuir, 19 (2003) 8951-8956 https://doi.org/10.1021/la034858o
  17. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, Polymer Pen Lithography. Science, 321 (2008) 1658-1660. https://doi.org/10.1126/science.1162193
  18. Z. Zheng, W.L. Daniel, L. R. Giam, F. Huo, A.J. Senesi, G. Zheng, and C.A. Mirkin, Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge. Angew. Chem. Int. Ed., 48 (2009) 7626-7629. https://doi.org/10.1002/anie.200902649
  19. K. S. Salaita, S. W. Lee, D. S. Ginger, and C. A. Mirkin, DPN-generated nanostructures as positive resists for preparing lithographic masters or hole arrays. Nano letters, 6 (2006) 2493-2498 https://doi.org/10.1021/nl061719t
  20. J. W. Jang, R. Sanedrin, A. J. Senesi, and Z. Zheng, Generation of metal photomasks by dippen nanolithography. Small, 5 (2009) 1850-1853. https://doi.org/10.1002/smll.200801837
  21. X. Liao, A. B. Braunschweig, and C.A. Mirkin, "Force-feedback" leveling of massively parallel arrays in polymer pen lithography. Small, 10 (2010) 1335-1340.
  22. J. Graham, M. Kryzeminski, and Z. Popovic, Capacitance based scanner for thickness mapping of thin dielectric films. Revew of scientific instruments, 71 (2000) 2219-2223. https://doi.org/10.1063/1.1150609