References
- Behounek, L. and Cintula, P. (2006), "Fuzzy logics as the logics of chains", Fuzzy Sets and Systems 157, pp. 604-610. https://doi.org/10.1016/j.fss.2005.10.005
- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
- Dunn, J. M. (1970), "Algebraic completeness for R-mingle and its extensions", The Journal of Symbolic Logic 35, pp. 1-13. https://doi.org/10.1017/s0022481200092161
- Dunn, J. M. and Hardegree, G. (2001), Algebraic Methods in Philosophical Logic, Oxford, Oxford Univ Press.
- Dunn, J. M. and Meyer, R. K. (1971), "Algebraic completeness results for Dummett's LC and its extensions", Mathematical Logic Quarterly 17, pp. 225-230. https://doi.org/10.1002/malq.19710170126
- Gabbay, D. and Shetman, V. B. (1993), "Undecidability of modal and intermediate first-order logics with two individual variables", The Journal of Symbolic Logic 58, pp. 800-823. https://doi.org/10.2307/2275098
- Galatos, N. and Raftery, J. G. (2012), "A category equivalence for odd Sugihara monoids and its applications", Journal of Pure and Applied Algebra 216, pp. 2177-2192. https://doi.org/10.1016/j.jpaa.2012.02.006
- Galminas, L. and Mersch, J. G. (2012}, "A pretabular classical relevance logic", Studia Logica 100, pp. 1211-1221. https://doi.org/10.1007/s11225-012-9455-2
- Meyer, R. K., Dunn, J. M., and Leblanc, H. (1976), "Completeness of relevant quantification theories", Notre Dame Journal of Formal Logic 15, pp. 97-121. https://doi.org/10.1305/ndjfl/1093891202
- Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
- Raftery, J. G. (2007), "Representable idempotent commutative residuated lattices", Transactions of the American Mathematical Society 359, pp. 4405-4427. https://doi.org/10.1090/S0002-9947-07-04235-3
- Rybakov, V., Kiyatkin, V., and Terziler, M. (1999), "Independent bases for rules admissible in pretabular logics", Logic Journal of the Interest Group in Pure and Applied Logics 7, pp. 253-266.
- Sugihara, T. (1955), "Strict implication free from implicational paradoxes", Memoirs of the Faculty of Liberal Arts, Fukui University, Series 1, pp. 55-59.
- Swirydowicz, K. (2008), "There exists an uncountable set of pretabular extensions of the relevant logic R and each logic of this set is generated by a variety of finite height", The Journal of Symbolic Logic 73, pp. 1249-1270. https://doi.org/10.2178/jsl/1230396916
- Yang, E. (2013), "R and Relevance principle revisited", Journal of Philosophical Logic 42, pp. 767-782. https://doi.org/10.1007/s10992-012-9247-1