Involutive Idempotent Uninorm Logics and Pretabularity

누승적 멱등 유니놈 논리와 선표성

  • Yang, Eunsuk (Department of Philosophy & Institute of Critical Thinking and Writing, Jeonbuk National University)
  • 양은석 (전북대학교 철학과, 비판적사고와논술연구소)
  • Received : 2019.07.04
  • Accepted : 2019.10.19
  • Published : 2019.10.31

Abstract

This paper deals with the pretabular property of some fuzzy logics. For this, we first introduce the involutive idempotent uninorm logics IdIUL and IUML and examine the relationship between IdIUL and the another well-known system $RM^T$. Next, we show that IUML is pretabular, whereas IdIUL is not.

이 글에서 우리는 퍼지 논리의 선표성 성질을 다룬다. 이를 위하여 먼저 누승적 멱등 유니놈 논리 IdIUL과 IUML 체계를 소개하고 IdIUL 체계와 우리에게 이미 알려진 $RM^T$ 체계의 관계를 다룬다. 다음으로 IUML은 선표성을 만족하지만 IdIUL은 그렇지 않다는 것을 보인다.

Keywords

References

  1. Behounek, L. and Cintula, P. (2006), "Fuzzy logics as the logics of chains", Fuzzy Sets and Systems 157, pp. 604-610. https://doi.org/10.1016/j.fss.2005.10.005
  2. Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
  3. Dunn, J. M. (1970), "Algebraic completeness for R-mingle and its extensions", The Journal of Symbolic Logic 35, pp. 1-13. https://doi.org/10.1017/s0022481200092161
  4. Dunn, J. M. and Hardegree, G. (2001), Algebraic Methods in Philosophical Logic, Oxford, Oxford Univ Press.
  5. Dunn, J. M. and Meyer, R. K. (1971), "Algebraic completeness results for Dummett's LC and its extensions", Mathematical Logic Quarterly 17, pp. 225-230. https://doi.org/10.1002/malq.19710170126
  6. Gabbay, D. and Shetman, V. B. (1993), "Undecidability of modal and intermediate first-order logics with two individual variables", The Journal of Symbolic Logic 58, pp. 800-823. https://doi.org/10.2307/2275098
  7. Galatos, N. and Raftery, J. G. (2012), "A category equivalence for odd Sugihara monoids and its applications", Journal of Pure and Applied Algebra 216, pp. 2177-2192. https://doi.org/10.1016/j.jpaa.2012.02.006
  8. Galminas, L. and Mersch, J. G. (2012}, "A pretabular classical relevance logic", Studia Logica 100, pp. 1211-1221. https://doi.org/10.1007/s11225-012-9455-2
  9. Meyer, R. K., Dunn, J. M., and Leblanc, H. (1976), "Completeness of relevant quantification theories", Notre Dame Journal of Formal Logic 15, pp. 97-121. https://doi.org/10.1305/ndjfl/1093891202
  10. Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
  11. Raftery, J. G. (2007), "Representable idempotent commutative residuated lattices", Transactions of the American Mathematical Society 359, pp. 4405-4427. https://doi.org/10.1090/S0002-9947-07-04235-3
  12. Rybakov, V., Kiyatkin, V., and Terziler, M. (1999), "Independent bases for rules admissible in pretabular logics", Logic Journal of the Interest Group in Pure and Applied Logics 7, pp. 253-266.
  13. Sugihara, T. (1955), "Strict implication free from implicational paradoxes", Memoirs of the Faculty of Liberal Arts, Fukui University, Series 1, pp. 55-59.
  14. Swirydowicz, K. (2008), "There exists an uncountable set of pretabular extensions of the relevant logic R and each logic of this set is generated by a variety of finite height", The Journal of Symbolic Logic 73, pp. 1249-1270. https://doi.org/10.2178/jsl/1230396916
  15. Yang, E. (2013), "R and Relevance principle revisited", Journal of Philosophical Logic 42, pp. 767-782. https://doi.org/10.1007/s10992-012-9247-1