DOI QR코드

DOI QR Code

케이블의 난연성능에 따른 복사 열유속이 연소물성에 미치는 영향

Influence of Radiant Heat Flux on Combustion Properties of Flame Retardant Cable

  • 문선여 (대전대학교 대학원 방재학과) ;
  • 황철홍 (대전대학교 소방방재학과)
  • 투고 : 2019.03.25
  • 심사 : 2019.05.20
  • 발행 : 2019.06.30

초록

다층·다성분 난연성 케이블의 화재시뮬레이션에서 요구되는 연소물성이 콘 칼로리미터를 통해 측정되었다. 난연성 케이블의 주요 재질에 따른 CO 및 Soot yields 그리고 연소열이 검토되었다. 케이블의 난연성능이 우수한 TFR-8(고난연성 PCV 및 XLPE 첨가), TFR-CVV-SB(고난연성 PCV 및 일반 PVC로 구성) 및 VCTF가 각각 대상으로 고려되었다. 주요 결과로서, 난연성케이블인 TFR-8과 TFR-CVV-SB는 입사 복사열유속이 25 kW/㎡에서 50 kW/㎡으로 증가됨에 따라 CO yield(yCO) 는 각각 23% 와 16% 증가한다. 반면에 VCTF의 CO yield는 복사 열유속의 변화에 큰 영향을 받지 않는다. 마지막으로 Soot yield 및 연소열은 시스의 재질(난연성능)이 강화될수록 복사 열유속에 의한 차이가 증가됨이 확인되었다. 따라서 다양한 열유속이 공존하는 화재환경에서 난연성 케이블의 연소물성의 적용에는 상당한 주의가 요구된다.

The combustion properties required for fire simulations of multi-layer, multi-component flame retardant cables were measured using a cone calorimeter. The CO and soot yields combustion efficiencies of the flame retardant cables were investigated. TFR-8 (flame retardant PCV and XLPE added), TFR-CVV-SB (flame retardant PCV and general PVC), and VCTF, which are excellent in the flame retardancy of cables, were considered. As the main result, the CO yield (yCO) of the TFR-8 and TFR-CVV-SB flame retardant cables increased by 23% and 16%, respectively, with increasing incident radiation heat flux from 25 kW/㎡ to 50 kW/㎡. On the other hand, the CO yield of VCTF was not influenced significantly by the changes in radiant heat flux. Finally, the soot yield and combustion efficiency increased as the sheath material (flame retardant performance) was strengthened. Therefore, in a fire environment where various heat fluxes coexist, attention should be paid to the top of the application of the combustion property of the flame retardant cable.

키워드

참고문헌

  1. Ministry of Public Safety and Security, "National Fire Information Center E-Fire Statistics" (2019).
  2. A. C. Fernandez-Pello, H. K. Hasegawa, K. Staggs, A. E. Lipska-Quinn and N. J. Alvares, "A Study of the Fire Performance of Electrical Cables", Proceedings of the International Symposium, International Association for Fire Safety Science, pp. 237-247 (2006).
  3. NRC and EPRI, "Nuclear Power Plant Fire Modeling Analysis Guidelines", NUREG-1934 and EPRI 1023259, Finial Report (2012).
  4. NRC and EPRI, "Verification and Validation of Selected Fire Models for Nuclear Power Plant Application", NUREG-1824 and EPRI 1011999, Finial Report (2007).
  5. Y. Niu and W. Li, "Simulation Study on Value of Cable Fire in the Cable Tunnel", Journal of Procedia Engineering, Vol. 43, pp. 569-573 (2012). https://doi.org/10.1016/j.proeng.2012.08.100
  6. IEEE Power Engineering Society, "IEEE Standard for Qualifying Class 1E Electric Cables and Field Splices for Nuclear Power Generating stations", IEEE Std 383 (1974).
  7. IEEE Power Engineering Society, "IEEE Standard for Qualifying Class 1E Electric Cables and Field Splices for Nuclear Power Generating stations", IEEE Std 383 (2003).
  8. IEEE Power Engineering Society, "Standard for Flame Testing of Cables for Use in Cable Tray in Industrial and Commercial Occupancies", IEEE Std 1202 (1991).
  9. E. Braun, J. R. Shields and R. H. Harris, "Flammability Characteristics of Electrical Cables Using the Cone Calorimeter", NIST Rep. NISTIR 88 (1989).
  10. M. A. Barnes, P. J. Briggs, M. M. Hirschler, A. F. Matheson and T. J. O'Neill, "A Comparative Study of the Fire Performance of Halogenated and Non-halogenated Materials for Cable Applications. Part I Tests on Materials and Insulated Wires", Journal of Fire and Materials, Vol. 20, pp. 1-16 (1996). https://doi.org/10.1002/(SICI)1099-1018(199601)20:1<1::AID-FAM553>3.0.CO;2-W
  11. M. A. Barnes, P. J. Briggs, M. M. Hirschler, A. F. Matheson and T. J. O'Neill, "A Comparative Study of the Fire Performance of Halogenated and Non-halogenated Materials for Cable Applications. Part II Tests on Cable", Journal of Fire and Materials, Vol. 20, pp. 17-37 (1996). https://doi.org/10.1002/(SICI)1099-1018(199601)20:1<17::AID-FAM554>3.0.CO;2-C
  12. A. Matala and S. Hostikka, "Probabilistic Simulation of Cable Performance and Water Based Protection in Cable Tunnel Fires", Journal of Nuclear Engineering and Design, Vol. 241, pp. 5263-5274 (2011). https://doi.org/10.1016/j.nucengdes.2011.09.014
  13. R. Meinier, R. Sonnier, P. Zavaleta, S. Suard and L. Ferry, "Fire Behavior of Halogen-free Flame Retardant Electrical Cables with the Cone Calorimeter", Journal of Hazard Materials, Vol. 342, pp. 306-316 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.027
  14. R. Sonnier, A. Viretto, A. Taguet and J.-M. Lopez-Cuesta, "Influence of the Morphology on the Fire Behavior of a Polycarbonate/poly(butylene terephthalate) Blend", Journal of Applied Polymer Science, Vol. 125, pp. 3148-3158 (2012). https://doi.org/10.1002/app.36480
  15. Q. Xie, H. Zhang and L. Tong, "Experimental Study on the Fire Protection Properties of PVC Sheath for Old and New Cables", Journal of Hazard Materials, Vol. 179, pp. 373-381 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.015
  16. H. Yang, Q. Fu, X. Cheng, R. K. K. Yue and H. Zhang, "Investigation of the Flammability of Different Cables using Pyrolysis Combustion Flow Calorimeter", Journal of Procedia Engineering, Vol. 62, pp. 778-785 (2013). https://doi.org/10.1016/j.proeng.2013.08.125
  17. J. Luche, E. Mathis, T. Rogaume, F. Richard and E. Guillaume, "High-density Polyethylene Thermal Degradation and Gaseous Compound Evolution in a Cone Calorimeter", Journal of Fire Safety, Vol. 54, pp. 24-35 (2012). https://doi.org/10.1016/j.firesaf.2012.08.002
  18. ISO 5660-1, "Rate of Heat Release of Building Products (Cone Calorimeter)", International Standards Organization, Geneva, Switzerland (1992).
  19. P. J. DiNenno, D. Drysdale, C. L. Beyler, W. D. Walton, L. P. Richard, J. R. Hall and J. M. Watts, "SFPE Hand Book of Fire Protection Engineering (Third Edition)", National Fire Protection Association, Society of Fire Protection Engineers (2002).
  20. V. Babrauskas, "Development of the Cone Calorimeter. A bench-scale Heat Release Rate Apparatus based on Oxygen Consumption", Journal of Fire and Materials, Vol. 8, pp. 81-95 (1984). https://doi.org/10.1002/fam.810080206
  21. R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Gutherie, A. Maranghides and G. W. Mulholland, "The NIST 3MW Quantitative Heat Release Rate Facility-Description and Procedure", NISTIR-7052, (2004).
  22. K. K-Hoinghaus and J. B. Jeffries, "Applied Combustion Diagnostics", Combustion: An International Series, Taylor & Francis, New York (2002).
  23. G. W. Mulholland, "Smoke Production and Properties", SFPE Handbook of Fire Protection Engineering, 3rd Ed., Section 2, Chapter 13, NFPA, US (2002).