DOI QR코드

DOI QR Code

실리콘 화합물로 처리된 목재의 새로운 연기위험성 평가

New Smoke Risk Assessment on Wood Treated with Silicone Compound

  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University) ;
  • Jin, Eui (Fire Prevention Research Center, Kangwon National University)
  • 투고 : 2019.07.09
  • 심사 : 2019.08.15
  • 발행 : 2019.08.31

초록

실리콘 화합물인 Sodium silicate, 3-aminopropyltrimethoxysilane 졸, 3-(2-aminoethylamino) propylmethyl-dimethoxysilane 졸, 3-(2-aminoethylamino) propyltrimethoxysilane 졸로 표면 처리한 편백목재 시편의 연기 및 연소가스 발생에 대한 시험을 하였다. 실리콘 화합물 졸로 각각 편백목재 시험편에 붓으로 3회 칠하였다. 콘칼로리미터(ISO 5660-1)를 사용하여 연기 및 연소가스를 분석하였고 연기는 새로운 연기위험성 평가 방법을 적용하여 평가하였다. 실리콘 화합물로 처리한 목재시험편의 연기성능지수(SPI)는 편백목재보다 1.66~8.42배 증가하였고, 연기성장지수(SGI)는 11.8~88.2% 감소하였다. 연기강도(SI)는 편백목재보다 1.0~50.5% 감소되었고, 연기 및 화재 위험성이 낮아짐을 예측할 수 있었다. 실리콘화합물로 처리한 시험편의 세 번째 최대일산화탄소(COpeak)농도는 공시편보다 22.5~33.3% 감소되었다. 그러나 미국직업안전위생관리국(OSHA) 허용기준(PEL)인 50 ppm보다 1.48~1.72배 높은 치명적인 독성을 발생시키는 것으로 측정되었다. 편백목재 자체는 일산화탄소 생성 농도가 높았지만 실리콘 화합물은 일산화탄소를 감소시키는 역할을 하였다.

A burning test was conducted on the smoke and combustion gases generated from cypress wood treated with sodium silicate, 3-aminopropyltrimethoxysilane sol, 3-(2-aminoethylamino)propylmethyldimethoxysilane sol, and 3-(2-aminoethylamino) propyltrimethoxysilane sol. The silicone compound sol was applied to each of the cypress wood specimens three times with a brush. The smoke and combustion generation gas were analyzed using a cone calorimeter (ISO 5660-1) and the smoke was also evaluated by applying new smoke risk assessment method. The smoke performance index (SPI) of the cypress treated with silicone compound increased 1.66 to 8.42 times and the smoke growth index (SGI) was 11.8 to 88.2%, respectively. The smoke intensity (SI) is expected to be 1.0~50.5% lower than that of the base specimens, resulting in lower smoke and fire hazards. The third maximum carbon monoxide (COpeak) concentration of the specimens treated with silicone compounds was 22.5~33.3% lower than that of the base specimens. On the other hand, it produced potentially fatal toxicity that was 1.48~1.72 times higher than the US Occupational Safety and Health Administration (OSHA) acceptance standard (PEL). Cypress wood itself produced a high carbon monoxide concentration, but the silicon compound played a role in reducing this level.

키워드

참고문헌

  1. P. Zhao, C. Guo and L. Li, "Exploring the Effect of Melamine Pyrophosphate and Aluminum Hypophosphite on Flame Retardant Wood Flour/Polypropylene Composites", Construction and Building Materials, Vol. 170, pp. 193-199 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.074
  2. T. Harada, D. Kamikawa, A. Miyatake, K. Shindo, N. Hattori, K. Ando and M. Miyabayashi, "Two-hour Fireproof Performance of Cross Laminated Timber (CLT) Covered with Fire-retardant Impregnated Wood", Mokuzai Gakkaishi, Vol. 65, No. 1, pp. 46-53 (2019). https://doi.org/10.2488/jwrs.65.46
  3. J. Jiang, J. Z. Li, J. Hu and D. Fan, "Effect of Nitrogen Phosphorus Flame Retardants on Thermal Degradation of Wood", Construction and Building Materials, Vol. 24, No. 12, pp. 2633-2637 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.064
  4. T. Jiang, X. Feng, Q. Wang, Z. Xiao, F. Wang and Y. Xie, "Fire Performance of Oak Modified with N-Methylol Resin and Methylolated Guanylurea Phosphate/Boric Acid-Based Fire Retardant", Construction and Building Materials, Vol. 72, pp. 1-6 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.004
  5. C. E. Hobbs, "Recent Advances in Bio-Based Flame Retardant Additives for Synthetic Polymeric Materials", Polymers, Vol. 11, No. 2, pp. 224-255 (2019). https://doi.org/10.3390/polym11020224
  6. J. W. Gilman, T. Kashiwagi, R. H. Harris, Jr., S. Lomakin, J. D. Lichtenhan, A. Bolf and P. Jones, "Char Enhancing Approaches to Flame Retarding Polymers", Chemistry and Technology of Polymer Additives, Blackwell Science Inc., Malden, pp. 135-150 (1999).
  7. C. H. Lee, C. W. Lee, J. W. Kim, C. K. Suh and K. M. Kim, "Organic Phosphorus-Nitrogen Compounds, Manufacturing Method and Compositions of Flame Retardants Containing Organic Phosphorus-Nitrogen Compounds", Korean Patent 2011-0034978 (2011).
  8. Y. L. Liu and C. I. Chou,"The Effect of Silicon Sources on the Mechanism of Phosphorus-Silicon Synergism of Flame Retardation of Epoxy Resins", Polymer Degradation and Stability, Vol. 90, pp. 515-522 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.04.004
  9. R. H. White and M. A. Dietenberger, "Wood Handbook: Wood as an Engineering Material, Ch.17: Fire safety", Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
  10. D. A. Purser, in: P. J. DiNenno et al. (Eds.), "Toxic Assessment of Combustion Products, The SFPE Handbook of Fire Protection Engineering", Third ed., National Fire Protection Association, Quincy, MA, USA, pp. 83-171 (2002).
  11. M. A. Delichatsios, "Smoke Yields from Turbulent Buoyant Jet Flames", Fire Safety Journal, Vol. 20, pp. 299-311 (1993). https://doi.org/10.1016/0379-7112(93)90052-R
  12. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement)", Genever, Switzerland (2015).
  13. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin and B. Fei, "Highly Efficient Flame Retardant and Smoke Suppression Mechanism of Boron Modified Graphene Oxide/Poly(Lactic acid) Nanocomposites", Carbon, Vol. 150, pp. 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  14. L. Yan, Z. Xu and N. Deng, "Effects of Polyethylene Glycol Borate on the Flame Retardancy and Smoke Suppression Properties of Transparent Fire-Retardant Coatings applied on Wood Substrates", Progress in Organic Coatings, Vol. 135, pp. 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  15. T. Fateh, T. Rogaume, J. Luche, F. Richard and F. Jabou, "Characterization of the Thermal Decomposition of Two Kinds of Plywood with a Cone Calorimeter - FTIR Apparatus", Journal of Analytical and Applied Pyrolysis, Vol. 107, pp. 87-100 (2014). https://doi.org/10.1016/j.jaap.2014.02.008
  16. A. Ernst and J. D. Zibrak, "Carbon Monoxide Poisoning", New England Journal Medicine, Vol. 339, pp. 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
  17. R. Von Burg, "Toxicology Update", Journal of Applied Toxicology, Vol. 19, No. 5, pp. 379-386. USA (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  18. U. C. Luft, "Aviation Physiology: the Effects of Altitude in Handbook of Physiology", American Physiology Society, Washington DC, USA, pp. 1099-1145 (1965).
  19. N. Ikeda, H. Takahashi, K. Umetsu and T. Suzuki, "The Course of Respiration and Circulation in Death by Carbon Dioxide Poisoning", Forensic Science International, Vol. 41, No. 1-2, pp. 93-99 (1989). https://doi.org/10.1016/0379-0738(89)90240-5
  20. D. A. Purser, "A Bioassay Model for Testing the Incapacitating Effects of Exposure to Combustion Product Atmospheres using Cynomolgus Monkeys", Journal of Fire Science, Vol. 2, No. 1, pp. 20-26 (1984). https://doi.org/10.1177/073490418400200104
  21. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", S. J. Grayson and D. A. Smith (Eds.), Elsevier Applied Science Publisher, London, UK. (1986).
  22. M. M. Hirschler, "Fire Performance of Organic Polymers, Thermal Decomposition and Chemical Composition", ACS Symposium Series 797, pp. 293-306 (2001).
  23. Y. J. Chung and E. Jin, "Smoke Generation by Burning Test of Cypress Plates Treated with Boron Cmpounds", Applied Chemistry for Engineering, Vol. 29, No. 6, pp. 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076
  24. K. R. Cho, C. H. Lee and S. K. Kim, "Study on the Smoke Density Characteristics of Flame Retardant Sol Manufactured by Sol-Gel Method", Fire Science and Engineering, Vol. 31, No. 3, pp. 11-18 (2017). https://doi.org/10.7731/KIFSE.2017.31.3.011
  25. E. Jin and Y. J. Chung, "Heat Risk Assessment of Wood Coated with Silicone Compounds", Fire Science and Engineering, Vol. 33, No. 2, pp. 9-19 (2019).
  26. W. T. Simpso, "Wood Handbook-Wood as an Engineering Material, Chapter 12", Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1987).
  27. B. Wang, Q. Tang, N. Hong, L. Song, L. Wang, Y. Shi and Y. Hu, "Effect of Cellulose Acetate Butyrate Microencapsulated Ammonium Polyphosphate on the Flame Retardancy, Mechanical, Electrical, and Thermal Properties of Intumescent Flame-Retardant Ethylenevinylacetate Copolymer/Microencapsulated Ammonium Polyphosphate/Polyamide-6 Blends", ACS Appl. Mater. Interfaces, Vol. 3, pp. 3754-3761 (2011). https://doi.org/10.1021/am200940z
  28. J. S. Bermejo, L. G. Rovira and R. Fernandez, "Fire-Retardant Performance of Intumescent Coatings Using Halloysites as a novel Fire-Retardant Additive", Jacobs Journal Nanomedicine and Nanotechnology, Vol. 1, No. 1, pp. 1-9 (2015).
  29. V. Babrauskas, "The SFPE Handbook of Fire Protection Engineering", Fourth Ed., National Fire Protection Association, Massatusetts, USA (2008).
  30. T. Balakrishnan, G. Bhagannaryana and K. Ramamurthi, "Growth, Structural, Optical, Thermal and Mechanical Properties of Ammonium Pentaborate Single Crystal", Spectrochimica Acta Part A, Vol. 71, No. 2, pp. 578-583 (2008). https://doi.org/10.1016/j.saa.2008.01.026
  31. O. Grexa, E. Horvathova, O. Besinova and P. Lehocky, "Flame Retardant treated Plyood", Polymer Degradation Stability, Vol. 64, No. 3, pp. 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  32. Q. Wang, J. Li and J. E. Winady, "Chemical Mechanism of Fire Retardance of Boric Acid on Wood", Wood Science and Technology, Vol. 38, pp. 375-389 (2004). https://doi.org/10.1007/s00226-004-0246-4
  33. M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang and D. Bakirtzis, "Flammability Assesment of Fire-Retarded Nordic Spruce Wood using Thermogravimetric Analyses and Cone Calorimetry", Fire Safety Journal, Vol. 44, No. 8, pp. 1053-1069 (2009). https://doi.org/10.1016/j.firesaf.2009.07.004
  34. C. Jiao, X. Chen and J. Zhang, "Synergistic Effects of Fe2O3 with Layered Double Hydroxides in EVA/LDH Composites", Polymer Engineering and Sciencs, Vol. 27, No. 5, pp. 465-479 (2009).
  35. L. Liu, J. Hu, J. Zhuo, C. Jiao, X. Chen and S. Li, "Synergistic Flame Retardant Effects between Hollow Glass Microspheres and Magnesium Hydroxide in Ethylene-Vinyl Acetate Composites", Polymer Degradation Stability, Vol. 104, pp. 87-94 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.03.019
  36. A. P. Mourituz, Z. Mathys and A. G. Gibson, "Heat Release of Polymer Composites in Fire", Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 7, pp. 1040-1054 (2005). https://doi.org/10.1016/j.compositesa.2005.01.030
  37. OHSA, "Carbon monoxide", OSHA fact sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
  38. M. J. Spearpoint and G. J. Quintiere, "Predicting the Burning of Wood Using an Integral Model", Combustion and Flame, Vol. 123, No. 3, pp. 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  39. OHSA, "Carbon Dioxide", Toxicological Review of Selected Chemicals, Final Rule on Air Comments project, OHSA's Comments, Jannuary 19, USA (1989).
  40. MSHA, "Carbon Monoxide", MSHA's Occupational Illness and Injury Prevention Program Topic, U.S. Department of Labor, USA (2015).