DOI QR코드

DOI QR Code

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor

연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계

  • Kim, Beom-Geun (Dept. of Ocean System Engineering, Gyeongsang National Univ.) ;
  • Khirul, Md Akhte (Dept. of Ocean System Engineering, Gyeongsang National Univ.) ;
  • Kwon, Sung-Hyun (Dept. of Marine Environmental Engineering, Engineering Research Institude(ERI), Gyeongsang National Univ.) ;
  • Cho, Dae-Chul (Dept. of Energy Environmental Engineering, Soonchunhyang Univ.)
  • Received : 2019.07.02
  • Accepted : 2019.09.02
  • Published : 2019.10.31

Abstract

This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

본 연구는 퇴적물이 소모하는 산소량(SOD)과 환경 인자가 서로 미치는 영향을 파악하기 위해 퇴적물 배양실험을 수행하였다. 이를 위해 실험실에서 용출 반응조를 설치하여 20일간 배양하였으며, 퇴적물에 존재하는 물질 중 P 및 Fe와의 관계를 중점적으로 연구하였다. 분석 결과, 수층의 용존 산소는 시간의 경과에 따라 감소하는 경향을 나타냈으며, 퇴적물의 산화환원전위 또한 음의 방향으로 진행되어 혐기적 환원환경이 조성되었다. 퇴적물 산소요구량(SOD)은 배양 초기 0.05mg/g로 측정되었으며, 20일차 0.09mg/g으로 퇴적물이 소모하는 산소량이 증가하는 경향을 관찰하였다. 이는 chl-a의 증가로 퇴적물 표층에 축적된 유기물의 분해에 의한 산소 소모(Biological-SOD), 그리고 환원반응에 의해 생성된 금속 환원물이 재산화 할 경우 소모되는 산소(Chemical-SOD)에 의한 것으로 보인다. 퇴적물에서 추출한 존재형태별 인과 SOD의 상관관계를 살펴보면 Ex-P, Org-P의 경우 양의 상관관계, Fe-P의 경우 음의 상관관계를 나타내었다. 또한, 실험 20일차 퇴적물의 미생물 군집을 분석한 결과 혐기성 철 환원균(FeRB)이 우점종으로 검출되었다. 따라서, 철 산화물과 결합한 인산염이 환원반응에 의해 분리될 경우 인산염은 수중으로 용출되어 일차생산력을 증가시키며, 환원물은 재산화 하여 퇴적물 산소 소모량에 기여하므로 본 연구는 산소 수지의 개선을 위한 기초 자료로 이용될 것으로 기대된다.

Keywords

References

  1. Belanger, T.V.(1981) Benthic oxygen demand in lake Apopka, Florida. Water Research 15(2): 267-274. https://doi.org/10.1016/0043-1354(81)90120-2
  2. Bostrom, B.(1982) Phosphorus release from lake sediment. Arch. Hydrobiol. Beih. Ergebn. Limn. 18: 5-59.
  3. Boström, B., J.M. Andersen, S. Fleischer and M. Jansson(1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229-244. https://doi.org/10.1007/BF00024907
  4. Brewer, W.S., A. Abernathy and M. Paynter(1977) Oxygen consumption by freshwater sediments. Water Research 11(5): 471-473. https://doi.org/10.1016/0043-1354(77)90090-2
  5. Chapra, S.C.(2008) Surface water-quality modeling. Waveland press.
  6. Edberg, N. and B.V. Hofsten(1973) Oxygen uptake of bottom sediments studied in situ and in the laboratory. Water Research 7(9): 1285-1294. https://doi.org/10.1016/0043-1354(73)90005-5
  7. Gelda, R.K., M.T. Auer and S.W. Effler(1995) Determination of sediment oxygen demand by direct measurement and by inference from reduced species accumulation. Marine and Freshwater Research 46(1): 81-88. https://doi.org/10.1071/MF9950081
  8. Golterman, H.(1977) Sediments as a source of phosphate for algal growth. Interactions between Sediments and Fresh Water; Proceedings of an International Symposium.
  9. Hatch, J. and J. Leventhal(1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-Y
  10. Hu, W., W. Lo, H. Chua, S. Sin and P. Yu(2001) Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong. Environment International 26(5-6): 369-375. https://doi.org/10.1016/S0160-4120(01)00014-9
  11. Hyun, J.(2005) Significance of Dissimilatory Fe (III) reduction in organic matter oxidation and bioremediation of environmental contaminants in anoxic marine environments. The Sea 10(3): 145-153. (in Korean with English abstract)
  12. Lee, Y., E. Choi, M. Park and S. Park(1992) Determination of dissolved oxygen change caused by aquatic plant and sediment: A stream model approach. Korea J. Limnol. 25: 215-223. (in Korean)
  13. Murray, L. and R.L. Wetzel(1987) Oxygen production and consumption associated with the major autotrophic components in two temperate seagrass communities. Mar. Ecol. Prog. Ser. 38: 231-239. https://doi.org/10.3354/meps038231
  14. Nealson, K.H. and D. Saffarini(1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annual Review of Microbiology 48(1): 311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523
  15. Phelps, E.B. and H. Streeter(1958) A study of the pollution and natural purification of the Ohio River.
  16. Ruttenberg, K., N. Ogawa, F. Tamburini, R. Briggs, N. Colasacco and E. Joyce(2009) Improved, high‐throughput approach for phosphorus speciation in natural sediments via the SEDEX sequential extraction method. Limnology and Oceanography: Methods 7(5): 319-333. https://doi.org/10.4319/lom.2009.7.319
  17. Ruttenberg, K.C. and R.A. Berner(1993) Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochimica et Cosmochimica Acta 57(5): 991-1007. https://doi.org/10.1016/0016-7037(93)90035-U
  18. Ruttenberg, K.C.(1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography 37(7): 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
  19. Stookey, L.L.(1970) Ferrozine---A new spectrophotometric reagent for iron. Analytical Chemistry 42(7): 779-781. https://doi.org/10.1021/ac60289a016
  20. Viollier, E., P. Inglett, K. Hunter, A. Roychoudhury and P. Van Cappellen(2000) The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Applied Geochemistry 15(6): 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
  21. Walker, R.R. and W.J. Snodgrass(1986) Model for sediment oxygen demand in lakes. Journal of Environmental Engineering 112(1): 25-43. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:1(25)
  22. Wang, W.(1980) Fractionation of sediment oxygen demand. Water Research 14(6): 603-612. https://doi.org/10.1016/0043-1354(80)90118-9
  23. Wang, W.(1981) Kinetics of sediment oxygen demand. Water Research 15(4): 475-482. https://doi.org/10.1016/0043-1354(81)90058-0
  24. Watanabe, F.T. and S. Olsen(1962) Colorimetric determination of phosphorus in water extracts of soil. Soil Science 93(3): 183-188. https://doi.org/10.1097/00010694-196203000-00005