References
- David E. DOBBS, A single instance of the Pythagorean theorem implies the parallel postulate, Internat. J. Math. Ed. Sci. Tech. 33(4) (2002), 596-600. https://doi.org/10.1080/002073902320300865
- EUCLID, The thirteen books of Euclid's Elements, Translated with introduction and commentary by Sir Thomas L. Heath, Vols. 1,2,3, Dover Publications, Inc., New York, 1956.
- H. EVES, An introduction to the History of Mathematics, Rinehart, New York, 1953.
- M. J. GREENBERG, (Translation in Korean by Lee, Woo Young), Euclidean and Non-Euclidean geometries, Kyung Moon Sa, 1997. M. J. Greenberg, 이우영 역, 유클리드 기하학과 비유클리드 기하학, 경문사, 2013.
- M. J. GREENBERG, Euclidean and Non-Euclidean Geometries : Development and History, W. H. Freeman and Company, San Francisco, 1980.
- Robin HARTSHORNE, Geometry: Euclid and beyond, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2000.
- Robin HARTSHORNE, Non-Euclidean III.36, The American Mathematical Monthly 110(6) (Jun/Jul 2003), 495-502. https://doi.org/10.2307/3647905
- R. HARTSHORNE (難破誠번역), 幾何学I, II, 現代数学から見たユークリッド原論, 丸善出版 株式会社, 2012.
- T. L. HEATH, The thirteen books of Euclid's Elements, translated from the text of Heiberg, with introduction and commentary, 2nd ed., 3 vols, Cambridge University Press, 1926(Dover reprint 1956).
- D. HILBERT, The Foundations of Geometry, 2nd English Edition, Authorized translated by Leo Unger from the 10th German Edition, Revised and Enlarged by Dr. Paul Bernays, The open court publishing company, 1971.
- K. JO, A historical study of de Zolt's axiom, The Korean Journal for History of Mathematics 30(5) (2017), 261-287.
- K. JO, S.-D. YANG, Moulton Geometry, The Korean Journal for History of Mathematics 29(3) (2016), 191-216. https://doi.org/10.14477/jhm.2016.29.3.191
- K. JO, S.-D. YANG, Pythagorean Theorem I : In non-Hilbert Geometry, The Korean Journal for History of Mathematics 31(6) (2018), 315-337.
- R. KAYA, Area formula for Taxicab triangle, ME Journal 12(4) (2006), 219-220.
- R. KAYA, H. B. COLAKOGLU, Taxicab versions of some Euclidean theorems, Int. J. Pure Allo. Math. 26(1) (2006), 69-81.
- I. KOCAYUSUFOGLU, E. OZDAMAR, Isometries of Taxicab geometry, Commun. Fac. Sci. Univ. Ank. Series Al 47 (1998), 73-83.
- LEE Jong Woo, Historical Backgrounds and Developments of Geometries, Kyung Moon Sa, 1997. 이종우 편저, 기하학의 역사적 배경과 발달, 경문사, 1997.
- LEE Nany, Euclidean Geometry and Beyond, Kyo Woo Sa, 2018. 이난이, 유클리드 기하와 그너머, 교우사, 2018.
- E. S. LOOMIS, The Pythagorean Proposition, Classics in Mathematics Education Series., National Council of Teachers of Mathematics, 1968.
- Paolo MARANER, A Spherical Pythagorean Theorem, The Mathematical intelligencer 32(3) (2010), 46-50. https://doi.org/10.1007/s00283-010-9152-9
- W. PEJAS, Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie, Math. Annalen143 (1961), 212-235. https://doi.org/10.1007/BF01342979
- K. P. THOMPSON, The nature of length, area, and volume in Taxicab geometry, Int. Electron. J. Geom. 4(2) (2011), 193-207.
- YUN Gabjin, Geometry, Kyo Woo Sa, 2009. 윤갑진, 기하학, 교우사, 2009.
- https://www.cut-the-knot.org/triangle/pythpar/PTimpliesPP.shtml