DOI QR코드

DOI QR Code

The Monte Carlo Simulation and Algorithm on the Relationship Interest Rate Models for the Pricing of Bond Options

채권 옵션의 가격결정을 위한 이자율 모형의 관계에 대한 알고리즘과 몬테 카르로 시뮬레이션

  • Received : 2019.07.18
  • Accepted : 2019.09.23
  • Published : 2019.09.30

Abstract

In this paper, we deal with two pricing of bond options using the relationship between the forward rate model and the Libor rate model. First, we derive a formula for obtaining discounted bond prices using the restrictive condition of the Ritchken and Sankarasubramanian (RS), and then use the volatility function relationship of the forward rate and the Libor rate models to find the analytic solution (AS) of bond options pricing. Second, the price of the bond options is calculated by simulating several scenarios from the presented condition using Monte Carlo Simulation (MCS). Comparing the results of the implementation of the above two pricing methods, the relative error (RE) is obtained, which means the ratio of AS and MCS. From the results, we can confirm that the RE is around 3.9%, which means that the price of the bond options can be predicted very accurately using the MCS as well as AS.

본 논문에서는 선도이자율 모형과 리보이자율 모형 사이의 관계를 이용하여 채권 옵션의 해석적인 해(Analytic Solution; AS)와 몬테 카르로 시뮬레이션(Monte Carlo Simulation; MCS)을 이용한 가격 결정을 다룬다. AS를 이용한 채권 옵션가격 결정은 Ritchken and Sankarasubramanian (RS)의 제한 조건을 이용하여 할인된 채권 가격을 구하는 공식을 유도하고, 선도이자율과 리보이자율 모형의 변동함수 사이의 관계를 활용한다. MCS을 이용한 채권 옵션 가격 결정은 MCS을 이용하여 제시된 조건으로부터 여러 가지 예정된 전개의 시뮬레이션을 활용한다. AS와 MCS을 이용한 가격 결정 방법을 실행하여 얻은 가격을 비교하면 AS와 MCS의 상대오차(Relative Error; RE)를 구할 수 있다. 이때 본 연구의 결과로부터 RE가 약 3.9%가 됨을 확인할 수 있다. 이것은 AS뿐만 아니라 MCS을 이용해도 채권 옵션의 가격을 매우 정확하게 예측할 수 있음을 의미한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Andrea, B. and J. Alexei (2007) "Habit Formation and Macroeconomic Models of the Term Structure of Interest Rates", Journal of Finance, 62, 3009-3063. https://doi.org/10.1111/j.1540-6261.2007.01299.x
  2. Ang, A. and M. Piazzesi (2003) "A no-arbitrage vector autoregression of term structure dynamics withmacroeconomic and latent variables", Journal of Monetary Economics, 50, 745-787. https://doi.org/10.1016/S0304-3932(03)00032-1
  3. Black, F., E. Derman and W. Toy (1990) "A One-Factor Model of Interest Rates and Its Application to Treasury Bond Options", Financial Analysts Journal, 46, 33-39. https://doi.org/10.2469/faj.v46.n1.33
  4. Brace, A., D. Gatarek and M. Musiela (1997) "The market model of interest rate dynamics", Mathematical Finance, 7, 127-155. https://doi.org/10.1111/1467-9965.00028
  5. Brennan, M. and E. Schwartz (1979) "A Continuous Time Approach to the Pricing of Interest Rates", Journal of Banking and Fiance, 3, 133-155. https://doi.org/10.1016/0378-4266(79)90011-6
  6. Bühler, W., M. Uhrig-Homburg, U. Walter and T. Weber (1999) "An Empirical Comparison of Forward-Rate and Spot-Rate Models for Valuing Interest-Rate Options", The Journal of Finance, 54, 269-305. https://doi.org/10.1111/0022-1082.00104
  7. Carverhill, A. (1994) "When is Spot Rate Markovian?", Mathematical Finance, 4, 305-312. https://doi.org/10.1111/j.1467-9965.1994.tb00060.x
  8. Chiarella, C. and O.K. Kwon (2001) "Classes of Interest Rate Models under the HJM Framework", Asia-Pacific financial markets, 8, 1-22. https://doi.org/10.1023/A:1011468322967
  9. Cox, J.C., J.E. Ingersoll and S.A. Ross (1985) "A Theory of the Term Structure of Interest Rate", Econometrica, 53, 385-407. https://doi.org/10.2307/1911242
  10. Das, S.R. and S. Foresi (1996) "Exact solutions for bond and option prices with systematic jump risk", Review of Derivatives Research, 1, 7-24. https://doi.org/10.1007/BF01536393
  11. Girsanov, I.V. (1960) "On Transforming a Certain Class of Stochastic Processes by Absolutely Continuous Substitution of Measures", Theory of Probability and Its Applications, 5, 285-301. https://doi.org/10.1137/1105027
  12. Hainaut, D. (2016) "A model for interest rates with clustering effects", Quantitative Finance, 16, 1203-1218. https://doi.org/10.1080/14697688.2015.1135251
  13. Health, D., R. Jarrow and A. Morton (1992) "Bond Pricing and the Term Structure of Interest Rates", Econometrica, 60, 77-105. https://doi.org/10.2307/2951677
  14. Ho, T.S. and S. Lee (1986) "Term Structure Movements and Pricing Interest Rate Contingent Claims", The Journal of Finance, 41, 1011-1028. https://doi.org/10.1111/j.1540-6261.1986.tb02528.x
  15. Hull, J. and A. White (1990) "Pricing Interest Rate Derivative Securities", Review of Financial Studies, 3, 573-592. https://doi.org/10.1093/rfs/3.4.573
  16. Hull, J. and A. White (1993) "Bond Option Pricing Based on a Model for the Evolution of Bond Prices", Advances in Futures and Options Research, 6, 1-13.
  17. Musiela, M. and M. Rutkowski (2005) Martingale Methods in Financial Modelling, Springer-Verlag, 2nd Edition.
  18. Ritchken, P. and L. Sankarasubramanian (1995) "Volatility Structures of Forward Rates and the Dynamics of the Term Structure", Mathematical Finance, 5, 55-72. https://doi.org/10.1111/j.1467-9965.1995.tb00101.x
  19. Vasicek, O.A. (1977) "An Equilibrium Characterization of the Term Structure", Journal of Financial Economics, 5, 177-188. https://doi.org/10.1016/0304-405X(77)90016-2
  20. Zhang, X., J. Xiong and Y. Shen (2018) "Bond and option pricing for interest rate model with clustering effects", Quantitative Finance, 19, 969-981. https://doi.org/10.1080/14697688.2017.1388534