DOI QR코드

DOI QR Code

Effect of Magnetic Orientation of Boron Nitride Modified with Magnetite on the Thermal Conductivity of Polyurethane-Based Organic-Inorganic Hybrids

마그네타이트로 표면 개질된 질화붕소의 자기장 배향이 폴리우레탄 기반 유·무기 하이브리드의 열전도성에 미치는 영향

  • Kim, Yeong Su (School of Chemical Materials Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Kwan Han (School of Chemical Materials Engineering, Kumoh National Institute of Technology) ;
  • Lee, Seung-han (School of Chemical Materials Engineering, Kumoh National Institute of Technology) ;
  • Min, Byung Gil (School of Chemical Materials Engineering, Kumoh National Institute of Technology)
  • 김영수 (금오공과대학교 화학소재공학부) ;
  • 윤관한 (금오공과대학교 화학소재공학부) ;
  • 이승한 (금오공과대학교 화학소재공학부) ;
  • 민병길 (금오공과대학교 화학소재공학부)
  • Received : 2019.09.08
  • Accepted : 2019.10.18
  • Published : 2019.10.31

Abstract

The organic-inorganic hybrids of polyurethane (PU) and boron nitride (BN) modified with magnetite ($Fe_3O_4$) were prepared to investigate the effect of BN orientation under a magnetic field for enhancing the thermal conductivity of PU. The introduction of magnetite could be proved through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). It was observed that the magnetite nanoparticles of 10-100 nm covered the BN surface. The thermal conductivity of the hybrids showed an increasing trend as the BN content increased. The hybrid containing 60 wt% of BN modified with magnetite without magnetic orientation exhibited a thermal conductivity that was 3.8 times higher than that of the neat PU. However, the same hybrid with a magnetic orientation exhibited thermal conductivity that was 10 times higher than that of the neat PU. Conclusively, the effect of the magnetite BN orientation under the magnetic field on the thermal conductivity was found to be very effective by forming a thermal path of BN platelet along the magnetic field direction in the hybrids.

Keywords

References

  1. R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, "Thermal Performance Challenges from Silicon to System", Inter. Technol. J., 2000, Q3, 6-8.
  2. K. C. Yung, H. Liem, H. S. Choy, and W. K. Lun, "Thermal Performance of High Brightness LEDArray Package on PCB", Int. Commun. Heat Mass Transfer., 2010, 37, 1266-1272. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.023
  3. R. Liu, D. Schreurs, W. D. Raedt, F. Vanaverbeke, R. Mertens, and I. D. Wolf, "Thermal Optimization of GaNonSi HEMTs with Plastic Packaging", Microelectron, Reliab., 2011, 51, 1788-1791. https://doi.org/10.1016/j.microrel.2011.06.033
  4. W. Lin, K. S. Moon, and C. P. Wong, "A Combined Process of In Situ Functionalization and Microwave Treatment to Achieve Ultrasmall Thermal Expansion of Aligned Carbon Nanotube-Polymer Nanocomposites: Toward Applications as Thermal Interface Materials", Adv. Mater., 2009, 21, 2421-2424. https://doi.org/10.1002/adma.200803548
  5. Y. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau, and M. Lisunova, "Electrical and Thermophysical Behaviour of PVC-MWCNT Nanocomposites", Compos. Sci. Technol., 2006, 68, 1981-1988. https://doi.org/10.1016/j.compscitech.2007.11.014
  6. A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, "Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials", J. Phys. Chem. C, 2007, 111, 7565-7569. https://doi.org/10.1021/jp071761s
  7. G. Sui, S. Jana, W. H. Zhong, M. A. Fuqua, and C. A. Ulven, "Dielectric Properties and Conductivity of Carbon Nanofiber/ semi-crystalline Polymer Composites", Acta. Mater., 2006, 56, 2381-2388. https://doi.org/10.1016/j.actamat.2008.01.034
  8. D. D. L. Chung, "Thermal Interface Materials", J. Mater. Eng. Perform., 2001, 10, 56-59. https://doi.org/10.1361/105994901770345358
  9. A. Devpura and P. E. Phelan, "Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-chip Technology", Proc. Int. Soc. Conf. Therm. Phenom., 2000, 1, 21-28.
  10. Y. S. Kim, S. H. Park, J. W. Choi, L. S. Kong, K. H. Yoon, B. G. Min, and S. H. Lee, "Comparative Analysis of Heat Sink and Adhesion Properties of Thermal Conductive Particles for Sheet Adhesive", Text. Color. Finish., 2016, 28, 48-56. https://doi.org/10.5764/TCF.2016.28.1.48
  11. R. F. Hill and H. Supancic, "Thermal Conductivity of Platelet- Filled Polymer Composites", J. Am. Ceram. Soc., 2002, 85, 851-857. https://doi.org/10.1111/j.1151-2916.2002.tb00183.x
  12. Y. W. Han, S. M. Lv, C. X. Hao, F. Ding, and Y. Zhang, "Thermal Conductivity Enhancement of BN/silicone Composites Cured under Electric Field: Stacking of Shape, Thermal Conductivity, and Particle Packing Structure Anisotropies", Thermochim. Acta., 2012, 529, 68-73. https://doi.org/10.1016/j.tca.2011.11.029
  13. J. T. Han, Y. Zheng, J. H. Cho, X. Xu, and K. Cho, "Stable Superhydrophobic Organic-Inorganic Hybrid Films by Electrostatic Self-Assembly", J. Phys. Chem. B, 2000, 109, 20773-20788. https://doi.org/10.1021/jp052691x
  14. H. S. Lim, J. W. Oh, S. Y. Kim, M-J. Yoo, S-D. Park, and W. S. Lee, "Anisotropically Alignable Magnetic Boron Nitride Platelets Decorated with Iron Oxide Nanoparticles", Chem. Mater., 2013, 25, 3315-3319. https://doi.org/10.1021/cm401488a
  15. V. Casalegno, P. Vavassori, M. Valleb, M. Ferraris, M. Salvo, and G. Pintsuk, "Measurement of Thermal Properties of a Ceramic/metal Joint by Laser Flash Method", J. Nucl. Mater., 2010, 407, 83-87. https://doi.org/10.1016/j.jnucmat.2010.09.032