DOI QR코드

DOI QR Code

Thermal Decomposition Activation Energy according to the Mesogen Structure of Liquid Crystalline Epoxy Composite with Aluminum Oxide Filler

산화 알루미늄을 분산시킨 열경화성 액정 에폭시의 Mesogen 구조에 따른 열분해 활성화 에너지

  • Hyun, Ha Neul (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Cho, Seung Hyun (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 현하늘 (숭실대학교 유기신소재파이버공학과) ;
  • 조승현 (숭실대학교 유기신소재파이버공학과)
  • Received : 2019.09.10
  • Accepted : 2019.10.12
  • Published : 2019.10.31

Abstract

A liquid crystalline thermosetting-epoxy-based composite was fabricated using diglycidyl ether of 4,4'-bisphenol and diglycidyl ether of terephthalylidene-bis-(4-amino-3-methylphenol), with aluminum oxide as a filler, and sulfanilamide and 4,4'-diaminodiphenylethane as a curing agent. Thermogravimetric analysis was performed to investigate its thermal behavior, and temperature differences of the sample were recorded using 1.0-7.0 wt% aluminum oxide. The activation energy for thermal decomposition was calculated using the Kissinger method, and the Flynn-Wall method. The results showed that the activation energy was proportional to the amount of filler added.

Keywords

References

  1. Y. Kim, J. Jung, H. Yeo, N. You, S. Jang, S. Ahn, S. Lee, and M. Goh, "Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites", J. Kor. Soc. Compos. Mat., 2017, 30, 1-6.
  2. H. Moon, K. Kim, S. Hwangbo, and S. H. Cho, "Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy Composite with Zirconia Filler", Text. Sci. Eng., 2015, 52, 206-214. https://doi.org/10.12772/TSE.2015.52.206
  3. H. Yeo, A. M. Islam, N. You, S. Ahn, M. Goh, J. Hahn, and S. Jang, "Characteristic Correlation Between Liquid Crystalline Epoxy and Alumina Filler on Theramal Conducting Properties", Compos. Sci. Technol., 2017, 141, 99-105. https://doi.org/10.1016/j.compscitech.2017.01.016
  4. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, and T. Tanaka, "Polyhedral Oligosilsesquioxane-modified Boron Nirtide Nanotube Based Epoxy Nanocomposites: an Ideal Dielectric Material with High Thermal Conductivity", Adv. Func. Mater., 2013, 23, 1824-1831. https://doi.org/10.1002/adfm.201201824
  5. M. Harada, N. Hamaura, M. Ochi, and Y. Agari, “Thermal Conductivity of Liquid Crystalline Epoxy/BN Filler Composites Having Ordered Network Structure”, Compos: Part B, 2013, 55, 306-313. https://doi.org/10.1016/j.compositesb.2013.06.031
  6. M. Akatsuka and Y. Takezawa, "Study of High Thermal Conductive Epoxy Resins Containing Controlled High-order Structures", J. Appl. Polym. Sci., 2003, 89, 2464-2467. https://doi.org/10.1002/app.12489
  7. M. G. Lu, M. J. Shim, and S. W. Kim, "Thermal Degradation of LC Epoxy Thermosets", J. Appl. Polym. Sci., 2000, 75, 1514-1521. https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1514::AID-APP10>3.0.CO;2-E
  8. Y. Li, P. Badrinarayanan, and M. R. Kessler, "Liquid Crystalline Resin Based on Biphenyl Mesogen: Thermal Characterization", Polymer, 2013, 54, 3017-3025. https://doi.org/10.1016/j.polymer.2013.03.043
  9. B. Hirn, C. Carfagna, and R. Lanzetta, "Linear Precursors of Liquid Crystalline Thermosets", J. Mater. Chem., 1996, 6, 1473-1478. https://doi.org/10.1039/jm9960601473
  10. J. Y. Lee, M. J. Shim, and S. W. Kim, "Synthesis of Liquid Crystalline Epoxy and Its Mechanical and Electrical Characteristics-Curing Reaction of LCE with Diamines by DSC Analysis", J. Appl. Polym. Sci., 2002, 83, 2419-2425. https://doi.org/10.1002/app.10204
  11. J. W. Schultz and R. P. Chartoff, “Photopolymerization of Nematic Liquid Crystal Monomers for Structure Applications: Molecular order and Orientation Dynamics”, Polymer, 1998, 39, 319-325. https://doi.org/10.1016/S0032-3861(97)00261-9
  12. W. F. A. Su, K. C. Chen, and S. Y. Tseng, "Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins", J. Appl. Polym. Sci., 2002, 78, 446-451. https://doi.org/10.1002/1097-4628(20001010)78:2<446::AID-APP250>3.0.CO;2-W
  13. H. Lee and N. Kris, "Handbook of Epoxy Resins", McGrawHill, New York, 1982.
  14. G. C. Huang, C. H. Lee, and J. K. Lee, “Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites”, Polymer(Korea), 2009, 33, 530-536.
  15. K. Hwang, J. Lee, B. Lee, and S. Jang, "Fluid Flow and Convective Heat Transfer Characterisitcs of $Al_2O_3$ NanoFluids", J. KSME B, 2007, 31, 16-20. https://doi.org/10.3795/KSME-B.2007.31.1.016
  16. J. Park, "Mechanical Porperties of Epoxy Alumina Multicomposites", J. Kor. Inst. Electr. Electron. Mater. Eng., 2016, 29, 796-802. https://doi.org/10.4313/JKEM.2016.29.12.796
  17. P. Auerkari, "Mechanical and Physical Properties of Engineering Alumina Creamics", Vtt Manufacturing, Technology Technical Research Center of Finland, 1996, pp.1-26.
  18. J. Park and S. H. Cho, "Thermal Decomposition Behavior Liquid Crystalline Epoxy-Based Composites", Text. Sci. Eng., 2018, 55, 324-329. https://doi.org/10.12772/TSE.2018.55.324
  19. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Ishigaki, N. Shimoyama, and H. Aoki, "Thermomechanical Properties of Liquid-Crystalline Epoxy Networks Arranged by a Magnetic Field", J. Polym. Sci: Part B, 2004, 42, 758-765. https://doi.org/10.1002/polb.10740