References
- Baricz, Generalized Bessel Functions of the First Kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010. https://doi.org/10.1007/978-3-642-12230-9
- H. Chaggara and N. Ben Romdhane, On the zeros of the hyper-Bessel function, Integral Transforms Spec. Funct. 26 (2015), no. 2, 96-101. https://doi.org/10.1080/10652469.2014.973191
- E. Deniz, H. Orhan, and H. M. Srivastava, Some sucient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanese J. Math. 15 (2011), no. 2, 883-917. https://doi.org/10.11650/twjm/1500406240
- M. U. Din, M. Raza, and E. Deniz, Sucient conditions for univalence of integral operators involving Dini Functions, (Submitted).
- M. U. Din, H. M. Srivastava, and M. Raza, Univalence of certain integral operators involving generalized Struve functions, Hacet. J. Math. Stat. 47 (2018), no. 4, 821-833. https://doi.org/10.15672/hjms.2017.485
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England, 1944.