DOI QR코드

DOI QR Code

THE QUASI-NEUTRAL LIMIT OF THE COMPRESSIBLE MAGNETOHYDRODYNAMIC FLOWS FOR IONIC DYNAMICS

  • Received : 2018.12.12
  • Accepted : 2019.05.17
  • Published : 2019.11.01

Abstract

In this paper we study the quasi-neutral limit of the compressible magnetohydrodynamic flows in the periodic domain ${\mathbb{T}}^3$ with the well-prepared initial data. We prove that the weak solution of the compressible magnetohydrodynamic flows governed by the Poisson equation converges to the strong solution of the compressible flow of magnetohydrodynamic flows as long as the latter exists.

Keywords

References

  1. D. Bresch, B. Desjardins, and B. Ducomet, Quasi-neutral limit for a viscous capillary model of plasma, Ann. Inst. H. Poincare Anal. Non Lineaire 22 (2005), no. 1, 1-9. https://doi.org/10.1016/j.anihpc.2004.02.001
  2. L. Chen, D. Donatelli, and P. Marcati, Incompressible type limit analysis of a hydro-dynamic model for charge-carrier transport, SIAM J. Math. Anal. 45 (2013), no. 3, 915-933. https://doi.org/10.1137/120876630
  3. S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations 25 (2000), no. 5-6, 1099-1113. https://doi.org/10.1080/03605300008821542
  4. D. Donatelli, E. Feireisl, and A. Novotny, Scale analysis of a hydrodynamic model of plasma, Math. Models Methods Appl. Sci. 25 (2015), no. 2, 371-394. https://doi.org/10.1142/S021820251550013X
  5. D. Donatelli and P. Marcati, A quasineutral type limit for the Navier-Stokes-Poisson system with large data, Nonlinearity 21 (2008), no. 1, 135-148. https://doi.org/10.1088/0951-7715/21/1/008
  6. D. Donatelli and P. Marcati, The quasineutral limit for the Navier-Stokes-Fourier-Poisson system, in Hyperbolic conservation laws and related analysis with applications, 193-206, Springer Proc. Math. Stat., 49, Springer, Heidelberg, 2014. https://doi.org/10.1007/978-3-642-39007-4_9
  7. D. Gerard-Varet, D. Han-Kwan, and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries, Indiana Univ. Math. J. 62 (2013), no. 2, 359-402. https://doi.org/10.1512/iumj.2013.62.4900
  8. D. Gerard-Varet, D. Han-Kwan, and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II, J. Ec. polytech. Math. 1 (2014), 343-386. https://doi.org/10.5802/jep.13
  9. X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal. 197 (2010), no. 1, 203-238. https://doi.org/10.1007/s00205-010-0295-9
  10. Q. Ju, F. Li, and H. Li, The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data, J. Differential Equations 247 (2009), no. 1, 203-224. https://doi.org/10.1016/j.jde.2009.02.019
  11. Q. Ju, F. Li, and S. Wang, Convergence of the Navier-Stokes-Poisson system to the incompressible Navier-Stokes equations, J. Math. Phys. 49 (2008), no. 7, 073515, 8 pp. https://doi.org/10.1063/1.2956495
  12. Q. Ju, F. Li, and S. Wang, Rate of convergence from the Navier-Stokes-Poisson system to the incompressible Euler equations, J. Math. Phys. 50 (2009), no. 1, 013533, 12 pp. https://doi.org/10.1063/1.3054866
  13. Q. Ju and Y. Li, Asymptotic limits of the full Navier-Stokes-Fourier-Poisson system, J. Differential Equations 254 (2013), no. 6, 2587-2602. https://doi.org/10.1016/j.jde.2012.12.016
  14. Y. Li, Q. Ju, and W. Xu, Quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system, J. Differential Equations 258 (2015), no. 11, 3661-3687. https://doi.org/10.1016/j.jde.2015.01.015
  15. X. Pu and B. Guo, Quasineutral limit of the pressureless Euler-Poisson equation for ions, Quart. Appl. Math. 74 (2016), no. 2, 245-273. https://doi.org/10.1090/qam/1424
  16. S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations 29 (2004), no. 3-4, 419-456. https://doi.org/10.1081/PDE-120030403
  17. S. Wang and S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations 31 (2006), no. 4-6, 571-591. https://doi.org/10.1080/03605300500361487
  18. A. I. Vol'pert and S. I. Hudjaev, The Cauchy problem for composite systems of nonlinear differential equations, Mat. Sb. (N.S.) 87(129) (1972), 504-528.