References
- D. Bresch, B. Desjardins, and B. Ducomet, Quasi-neutral limit for a viscous capillary model of plasma, Ann. Inst. H. Poincare Anal. Non Lineaire 22 (2005), no. 1, 1-9. https://doi.org/10.1016/j.anihpc.2004.02.001
- L. Chen, D. Donatelli, and P. Marcati, Incompressible type limit analysis of a hydro-dynamic model for charge-carrier transport, SIAM J. Math. Anal. 45 (2013), no. 3, 915-933. https://doi.org/10.1137/120876630
- S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations 25 (2000), no. 5-6, 1099-1113. https://doi.org/10.1080/03605300008821542
- D. Donatelli, E. Feireisl, and A. Novotny, Scale analysis of a hydrodynamic model of plasma, Math. Models Methods Appl. Sci. 25 (2015), no. 2, 371-394. https://doi.org/10.1142/S021820251550013X
- D. Donatelli and P. Marcati, A quasineutral type limit for the Navier-Stokes-Poisson system with large data, Nonlinearity 21 (2008), no. 1, 135-148. https://doi.org/10.1088/0951-7715/21/1/008
- D. Donatelli and P. Marcati, The quasineutral limit for the Navier-Stokes-Fourier-Poisson system, in Hyperbolic conservation laws and related analysis with applications, 193-206, Springer Proc. Math. Stat., 49, Springer, Heidelberg, 2014. https://doi.org/10.1007/978-3-642-39007-4_9
- D. Gerard-Varet, D. Han-Kwan, and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries, Indiana Univ. Math. J. 62 (2013), no. 2, 359-402. https://doi.org/10.1512/iumj.2013.62.4900
- D. Gerard-Varet, D. Han-Kwan, and F. Rousset, Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II, J. Ec. polytech. Math. 1 (2014), 343-386. https://doi.org/10.5802/jep.13
- X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal. 197 (2010), no. 1, 203-238. https://doi.org/10.1007/s00205-010-0295-9
- Q. Ju, F. Li, and H. Li, The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data, J. Differential Equations 247 (2009), no. 1, 203-224. https://doi.org/10.1016/j.jde.2009.02.019
- Q. Ju, F. Li, and S. Wang, Convergence of the Navier-Stokes-Poisson system to the incompressible Navier-Stokes equations, J. Math. Phys. 49 (2008), no. 7, 073515, 8 pp. https://doi.org/10.1063/1.2956495
- Q. Ju, F. Li, and S. Wang, Rate of convergence from the Navier-Stokes-Poisson system to the incompressible Euler equations, J. Math. Phys. 50 (2009), no. 1, 013533, 12 pp. https://doi.org/10.1063/1.3054866
- Q. Ju and Y. Li, Asymptotic limits of the full Navier-Stokes-Fourier-Poisson system, J. Differential Equations 254 (2013), no. 6, 2587-2602. https://doi.org/10.1016/j.jde.2012.12.016
- Y. Li, Q. Ju, and W. Xu, Quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system, J. Differential Equations 258 (2015), no. 11, 3661-3687. https://doi.org/10.1016/j.jde.2015.01.015
- X. Pu and B. Guo, Quasineutral limit of the pressureless Euler-Poisson equation for ions, Quart. Appl. Math. 74 (2016), no. 2, 245-273. https://doi.org/10.1090/qam/1424
- S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity, Comm. Partial Differential Equations 29 (2004), no. 3-4, 419-456. https://doi.org/10.1081/PDE-120030403
- S. Wang and S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations 31 (2006), no. 4-6, 571-591. https://doi.org/10.1080/03605300500361487
- A. I. Vol'pert and S. I. Hudjaev, The Cauchy problem for composite systems of nonlinear differential equations, Mat. Sb. (N.S.) 87(129) (1972), 504-528.