DOI QR코드

DOI QR Code

Composite PEO-Coatings as Defence Against Corrosion and Wear: A Review

  • Gnedenkov, S.V. (Institute of Chemistry Far Eastern Branch of Russian Academy of Sciences) ;
  • Sinebryukhov, S.L. (Institute of Chemistry Far Eastern Branch of Russian Academy of Sciences) ;
  • Sergienko, V.I. (Institute of Chemistry Far Eastern Branch of Russian Academy of Sciences) ;
  • Gnedenkov, A.S. (Institute of Chemistry Far Eastern Branch of Russian Academy of Sciences)
  • Received : 2019.06.18
  • Accepted : 2019.09.20
  • Published : 2019.10.31

Abstract

This paper reviews recent approaches to develop composite polymer-containing coatings by plasma electrolytic oxidation (PEO) using various low-molecular fractions of superdispersed polytetrafluoroethylene (SPTFE). The features of the unique approaches to form the composite polymer-containing coating on the surface of MA8 magnesium alloy were summarized. Improvement in the corrosion and tribological behavior of the polymer-containing coating can be attributed to the morphology and insulating properties of the surface layers and solid lubrication effect of the SPTFE particles. Such multifunctional coatings have high corrosion resistance ($R_p=3.0{\times}10^7{\Omega}cm^2$) and low friction coefficient (0.13) under dry wear conditions. The effect of dispersity and ${\xi}$-potential of the nanoscale materials ($ZrO_2$ and $SiO_2$) used as electrolyte components for the plasma electrolytic oxidation on the composition and properties of the coatings was investigated. Improvement in the protective properties of the coatings with the incorporated nanoparticles was explained by the greater thickness of the protective layer, relatively low porosity, and the presence of narrow non-through pores. The impedance modulus measured at low frequency for the zirconia-containing layer (${\mid}Z{\mid}_{f=0.01Hz}=1.8{\times}10^6{\Omega}{\cdot}cm^2$) was more than one order of magnitude higher than that of the PEO-coating formed in the nanoparticles-free electrolyte (${\mid}Z{\mid}_{f=0.01Hz}=5.4{\times}10^4{\Omega}{\cdot}cm^2$).

Keywords

References

  1. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Technol., 122, 73 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  2. J. Liang, L. Hu, and J. Hao, Appl. Surf. Sci., 253, 4490 (2007) . https://doi.org/10.1016/j.apsusc.2006.09.064
  3. P. Zhang, X. Nie, H. Hua, and Y. Liu, Surf. Coat. Technol., 205, 1508 (2010) . https://doi.org/10.1016/j.surfcoat.2010.10.015
  4. F. Y. Jin, P. K. Chu, G. D. Xu, J. Zhao, D. L.Tang, and H. H. Tong, Mat. Sci. Eng A., 435-436, 123 (2006) . https://doi.org/10.1016/j.msea.2006.07.059
  5. S. L. Sinebryukhov, M. V. Sidorova, V. S. Egorkin, P. M. Nedozorov, A. Yu Ustinov, E. F. Volkova, and S. V. Gnedenkov, Prot. Met., 489, 678 (2012) .
  6. S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinebryukhov, V. S. Egorkin, M. V. Nistratova, A. Yerokhin, and A. Matthews, Surf. Coat. Technol., 204, 2316 (2010) . https://doi.org/10.1016/j.surfcoat.2009.12.024
  7. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, S. V. Gnedenkov, and V. I. Sergienko, Corros. Sci. Tech., 16, 151(2017). https://doi.org/10.14773/cst.2017.16.3.151
  8. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, and S. V. Gnedenkov, Sol. St. Phen., 245, 89 (2016). https://doi.org/10.4028/www.scientific.net/SSP.245.89
  9. V. S. Egorkin, S. V. Gnedenkov, S. L. Sinebryukhov, I. E. Vyaliy, A. S. Gnedenkov, and R. G. Chizhikov, Surf. Coat. Technol., 334, 29 (2018). https://doi.org/10.1016/j.surfcoat.2017.11.025
  10. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, I. E. Vyaliy, V. S. Egorkin, and S. V. Gnedenkov, Materials, 11, 2053 (2018). https://doi.org/10.3390/ma11102053
  11. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, and S. V. Gnedenkov, Sol. St. Phen., 213, 143 (2014). https://doi.org/10.4028/www.scientific.net/SSP.213.143
  12. S. V. Gnedenkov and S. L. Sinebryukhov, Compos. Interface., 16, 387 (2009). https://doi.org/10.1163/156855409X447165
  13. S. V. Gnedenkov, S. L. Sinebryukhov, A. V. Puz, A. S. Gnedenkov, I. E. Vyaliy, D. V. Mashtalyar, and V. S. Egorkin, Sol. St. Phen., 213, 149 (2014). https://doi.org/10.4028/www.scientific.net/SSP.213.149
  14. S. V. Gnedenkov, S. L. Sinebryukhov, V. S. Egorkin, D. V. Mashtalyar, I. E. Vyaliy, K. V. Nadaraia, I. M. Imshinetskiy, A. I. Nikitin, E. P. Subbotin, and A. S. Gnedenkov, J. Alloy. Compd., 808, 151629 (2019). https://doi.org/10.1016/j.jallcom.2019.07.341
  15. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, I. E. Vyaliy, V. S. Egorkin, and S. V. Gnedenkov, Materials, 11, 2177 (2018). https://doi.org/10.3390/ma11112177
  16. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, I. M. Imshinetskiy, I. E. Vyaliy, and S. V. Gnedenkov, Materials, 12, 2615 (2019). https://doi.org/10.3390/ma12162615
  17. S. L. Sinebryukhov, A. S. Gnedenkov, D. V. Mashtalyar, and S. V. Gnedenkov, Surf. Coat. Technol., 205, 1697 (2010). https://doi.org/10.1016/j.surfcoat.2010.05.048
  18. D. V. Mashtalyar, S. V. Gnedenkov, S. L. Sinebryukhov, I. M. Imshinetskiy, A. S. Gnedenkov, and V. M. Bouznik, J. Alloy. Compd., 767, 353 (2018). https://doi.org/10.1016/j.jallcom.2018.07.085
  19. S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. M. Buznik, A. M. Emel'yanenko, and L. B. Boinovich, Prot. Met., 47, 93 (2011).
  20. L. B. Boinovich, S. V. Gnedenkov, D. A. Alpysbaeva, V. S. Egorkin, A. M. Emelyanenko, S. L. Sinebryukhov and A. K. Zaretskay, Corros. Sci., 55, 238 (2012). https://doi.org/10.1016/j.corsci.2011.10.023
  21. S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, M. V. Sidorova, and A. S. Gnedenkov, Corros. Sci., 85, 52 (2014). https://doi.org/10.1016/j.corsci.2014.03.035
  22. I. M. Imshinetskiy, S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, A. V. Samokhin, and Y. V. Tsvetkov, Sol. St. Phen., 213, 125 (2014). https://doi.org/10.4028/www.scientific.net/SSP.213.125
  23. S. V. Gnedenkov, O. A. Khrisanfova, S. L. Sinebryukhov, A. V. Puz, and A. S. Gnedenkov, Mater. Manuf. Process., 23, 879 (2008). https://doi.org/10.1080/10426910802385117
  24. S. L. Sinebryukhov, A. S. Gnedenkov, O. A. Khrisanfova, and S. V. Gnedenkov, Surf. Eng., 25, 565 (2009). https://doi.org/10.1179/026708409X363237
  25. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, and S. V. Gnedenkov, Surf. Coat. Technol., 225, 112 (2013). https://doi.org/10.1016/j.surfcoat.2013.03.023

Cited by

  1. Introduction to Plasma Electrolytic Oxidation-An Overview of the Process and Applications vol.10, pp.7, 2019, https://doi.org/10.3390/coatings10070628