DOI QR코드

DOI QR Code

Superhard SiC Thin Films with a Microstructure of Nanocolumnar Crystalline Grains and an Amorphous Intergranular Phase

  • Lim, Kwan-Won (Department of Materials Science and Engineering, Korea University) ;
  • Sim, Yong-Sub (Department of Materials Science and Engineering, Korea University) ;
  • Huh, Joo-Youl (Department of Materials Science and Engineering, Korea University) ;
  • Park, Jong-Keuk (Center for Electronic Materials, Korea institute of Science and Technology) ;
  • Lee, Wook-Seong (Center for Electronic Materials, Korea institute of Science and Technology) ;
  • Baik, Young-Joon (Center for Electronic Materials, Korea institute of Science and Technology)
  • 투고 : 2019.06.26
  • 심사 : 2019.10.24
  • 발행 : 2019.10.31

초록

Silicon carbide (SiC) thin films become superhard when they have microstructures of nanocolumnar crystalline grains (NCCG) with an intergranular amorphous SiC matrix. We investigated the role of ion bombardment and deposition temperature in forming the NCCG in SiC thin films. A direct-current (DC) unbalanced magnetron sputtering method was used with pure Ar as sputtering gas to deposit the SiC thin films at fixed target power of 200 W and chamber pressure of 0.4 Pa. The Ar ion bombardment of the deposited films was conducted by applying a negative DC bias voltage 0-100 V to the substrate during deposition. The deposition temperature was varied between room temperature and $450^{\circ}C$. Above a critical bias voltage of -80 V, the NCCG formed, whereas, below it, the SiC films were amorphous. Additionally, a minimum thermal energy (corresponding to a deposition temperature of $450^{\circ}C$ in this study) was required for the NCCG formation. Transmission electron microscopy, Raman spectroscopy, and glancing angle X-ray diffraction analysis (GAXRD) were conducted to probe the samples' structural characteristics. Of those methods, Raman spectroscopy was a particularly efficient non-destructive tool to analyze the formation of the SiC NCCG in the film, whereas GAXRD was insufficiently sensitive.

키워드

참고문헌

  1. A. V. Singh, S. Chandra, S. Kumar, and G. Bose, J. Micromech. Microeng., 22, 025010 (2012). https://doi.org/10.1088/0960-1317/22/2/025010
  2. X.-A. Fu, J.L. Dunning, M. Mehregany, and C.A. Zorman, J. Electrochem. Soc., 158, H675 (2011). https://doi.org/10.1149/1.3575160
  3. J. Trevino, X.-A. Fu, M. Mehregany, and C. A. Zorman, J. Micromech. Microeng., 24, 065001 (2014). https://doi.org/10.1088/0960-1317/24/6/065001
  4. M. Chaker, S. Boily, Y. Diawara, M. El Khakani, E. Gat, A. Jean, H. Lafontaine, and H. Pepin, J. Voyer, J. Kieffer, J. Vac. Sci. Technol. B, 10, 3191 (1992). https://doi.org/10.1116/1.585910
  5. S.-I. Han, P. Mangat, S. Smith, W. Dauksher, D. Convey, and R. Gregory, J. Vac. Sci. Technol. A, 18, 1225 (2000). https://doi.org/10.1116/1.582330
  6. M. P. Schmidt, I. Solomon, H. Tran-Quoc, and J. Bullot, J. Non.Cryst. Solids, 77, 849 (1985).
  7. A. Mahan, D. Williamson, M. Ruth, and P. Raboisson, J. Non.Cryst. Solids, 77, 861 (1985).
  8. Z. Yu, I. Pereyra, and M. Carreno, Sol. Energy Mater. Sol. Cells, 66, 155 (2001). https://doi.org/10.1016/S0927-0248(00)00168-9
  9. G. Foti, Appl. Surf. Sci., 184, 20 (2001). https://doi.org/10.1016/S0169-4332(01)00751-6
  10. P. T. Shaffer, J. Am. Ceram. Soc., 47, 466 (1964). https://doi.org/10.1111/j.1151-2916.1964.tb14438.x
  11. A. Costa, S. Camargo Jr, C. Achete, and R. Carius, Thin Solid Films, 377, 243 (2000). https://doi.org/10.1016/S0040-6090(00)01321-3
  12. M. El Khakani, M. Chaker, M. O'Hern, and W. Oliver, J. Appl. Phys., 82, 4310 (1997). https://doi.org/10.1063/1.366249
  13. M. El Khakani, M. Chaker, A. Jean, S. Boily, J. Kieffer, M. O'hern, M. Ravet, and F. Rousseaux, J. Mater. Res., 9, 96 (1994). https://doi.org/10.1557/JMR.1994.0096
  14. V. Kulikovsky, P. Bohac, J. Zemek, V. Vorlicek, A. Kurdyumov, and L. Jastrabik, Diam. Relat. Mater., 16, 167 (2007). https://doi.org/10.1016/j.diamond.2006.04.011
  15. V. Kulikovsky, V. Vorlicek, P. Bohac, M. Stranyanek, R. Ctvrtlik, A. Kurdyumov, and L. Jastrabik, Surf. Coat. Technol., 202, 1738 (2008). https://doi.org/10.1016/j.surfcoat.2007.07.029
  16. F. Liao, S. Girshick, W. Mook, W. Gerberich, and M. Zachariah, Appl. Phys. Lett., 86, 171913 (2005). https://doi.org/10.1063/1.1920434
  17. K. E. Bae, K. W. Chae, J. K. Park, W. S. Lee, and Y. J. Baik, Adv. Eng. Mater., 18, 1123 (2016). https://doi.org/10.1002/adem.201600008
  18. K.-E. Bae, J.-K. Park, W.-S. Lee, Y.-J. Baik, and K.-W. Chae, Korean J. Met. Mater., 53, 541 (2015). https://doi.org/10.3365/KJMM.2015.53.8.541
  19. S. Veprek and A.S. Argon, J. Vac. Sci. Technol. B, 20, 650 (2002). https://doi.org/10.1116/1.1459722
  20. S. Veprek, S. Mukherjee, P. Karvankova, H.-D. Mannling, J. He, K. Moto, J. Prochazka, and A. Argon, J. Vac. Sci. Technol. A, 21, 532 (2003).
  21. S. Veprek, M.G. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films, 476, 1 (2005). https://doi.org/10.1016/j.tsf.2004.10.053
  22. J. Musil, Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering, in: Nanostructured coatings, p. 407, Springer (2006).
  23. J. Musil and M. Jirout, Surf. Coat. Technol., 201, 5148 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.020
  24. P. Musumeci, R. Reitano, L. Calcagno, F. Roccaforte, A. Makhtari, and M. Grimaldi, Philos. Mag. B, 76, 323 (1997). https://doi.org/10.1080/01418639708241097
  25. R. Messier, A. Giri, and R. Roy, J. Vac. Sci. Technol. A, 2, 500 (1984). https://doi.org/10.1116/1.572604
  26. M. Lattemann, E. Nold, S. Ulrich, H. Leiste, and H. Holleck, Surf. Coat. Technol., 174, 365 (2003). https://doi.org/10.1016/S0257-8972(03)00695-9
  27. Y. Inoue, S. Nakashima, A. Mitsuishi, S. Tabata, and S. Tsuboi, Solid State Commun., 48, 1071 (1983). https://doi.org/10.1016/0038-1098(83)90834-7
  28. R. Hillel, M. Maline, F. Gourbilleau, G. Nouet, R. Carles, and A. Mlayah, Mater. Sci. Eng. A, 168, 183 (1993). https://doi.org/10.1016/0921-5093(93)90725-T
  29. V. Kulikovsky, V. Vorli'cek, P. Bohac, A. Kurdyumov, and L. Jastrabi'k, Diam. Relat. Mater., 13, 1350 (2004). https://doi.org/10.1016/j.diamond.2003.10.040
  30. A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095
  31. H. Hobert, H. Dunken, S. Urban, F. Falk, and H. Stafast, Vib. Spectrosc., 29, 177 (2002). https://doi.org/10.1016/S0924-2031(01)00200-4