DOI QR코드

DOI QR Code

The Study on Improvement about Structural Integrity of Main Landing Gear for Rotorcraft

회전익 항공기 구조건전성 향상을 위한 주륜착륙장치 결함 개선연구

  • Received : 2019.08.30
  • Accepted : 2019.10.04
  • Published : 2019.10.31

Abstract

The landing gear is a component that requires a high degree of safety to protect the lives of rotary-wing aircraft and boarding personnel, absorbing the impact on transfer/landing and supporting the fuselage during taxiing and mooring on the ground. In particular, the wheel landing gear supporting the aircraft fuselage absorbs most of the shock from the ground through the shock absorber and tires. This ensures the safety of the pilot on board the aircraft and satisfies the operational capability of the soldiers between missions. During the operation of a rotary-wing aircraft, a number of piston pins, which are a component of the right main wheel landing gear, were found to be broken. Therefore, this study examined the root cause of the piston pin crack phenomenon found in the main wheel landing gear. For this purpose, various causes were identified from fracture surface analysis of a flight test. In particular, the possibility of cracking was analyzed based on the influence on the fastening torque with the drag beam component applied to the piston pin at the time of development. This ensures the fatigue life and structural integrity.

착륙장치는 회전익 항공기 및 탑승 병력의 생명을 보호해야 하는 고도의 안전성이 요구되는 주요 구성품으로 이/착륙 시 충격을 흡수하고 지상에서 활주 및 계류 시 동체를 지지한다. 특히 항공기 동체를 지지하는 주륜 착륙장치는 지면으로부터 시작되는 충격을 완충장치와 타이어를 통해 대부분 흡수하는 역할을 수행하게 되는데, 이를 통해 항공기에 탑승한 조종사의 안전을 보장하고, 임무 수행 간 병력의 작전 운용능력을 만족시킨다. A 기종 회전익 항공기 운용 중에, 우측 주륜 착륙장치 구성품인 피스톤 핀(Piston Pin)이 다수 파손된 것이 확인되었다. 따라서 본 연구에서는 주륜 착륙장치에서 발견된 피스톤 핀(Piston Pin) 균열 현상에 대한 근본적인 원인을 찾기 위해, 파면 분석에서부터 비행 시험을 통한 착륙 하중 해석에 이르기까지 다양한 원인 규명 방법을 모색하였다. 특히 개발 당시 피스톤 핀에 적용되었던 드래그 빔(Drag beam) 구성품과의 체결 토크에 대한 영향성을 토대로 균열 발생 가능성들에 대한 분석을 수행하였으며, 이를 통해 피로 수명과 구조건전성을 확보할 수 있는 방안을 제시하였다.

Keywords

References

  1. KDS 1520-4001, "Helicopter, Utility", Defense Acquisition Program Administration, 2013.
  2. KDS 1620-4009, "Main Landing Gear, Fixed", Defense Acquisition Program Administration, 2013.
  3. J. H. Choi, M. W. Chang, Y. W. Lee, J. J. Yoon, "An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft", KSAA, Vol.25, No.3, pp.61-67, 2017. DOI : https://doi.org/10.12985/ksaa.2017.25.3.061
  4. J. H. Choi, M. W. Chang, H. G. Lim, J. S. Lee, "A improvement Study on Safety Assurance of Main Landing Gear Failure for Rotary Wing Aircraft", J. of The Korean Society for Aeronautical and Space Sciences, Vol.45, No.6 pp.490-497, 2017. DOI : https://doi.org/10.5139/JKSAS.2017.45.6.490
  5. B. H. Choi, "RB-FA-G003 Fracture Surface Analysis", Korea Research Institute of Standards and Science, 2011, Available from:https://www.randb.co.kr/wp-content (accessed Feb. 20,2019)
  6. Abaqus User's Guide, Dassault Systems, 2014, Available from:https:/130.149.89.49:2080/v6.11/pdf_bo oks/CAE.pdf (accessed Jun. 1, 2019)
  7. J. S. Przemieniecki, "Aircraft Landing Gear Design : Principles and Practices", AIAA Education Series, 1988. DOI : https://doi.org/10.2514/4.861468
  8. James M. Gere, "Mechanics of Materials", Thomson Learning, Inc, 2004
  9. Fatigue Basic Theory, CAIWARE, 2015, available from: https://caiware.com (accessed Feb. 5, 2018)
  10. Goodman's Fatigue Equation, NFX MIDAS, 2013, Available from : https://kor.midasuser.com/nfx/techpaper/keyword_view.asp?idx=326 (accessed Dec. 5, 2018)
  11. MIL-HDBK-5J, Federal Aviation Administration, "Metallic Materials and Elements for Aerospace Vehicle Structures", 2003
  12. 88PR6241, "Fatigue Test Report for KUH Main Landing Gear" Korea Aerospace Research Institute, 2010
  13. MIL-A-83444, Federal Aviation Administration, "Airplane Damage Tolerance Requirements", 1974