References
- Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., Mirabbasi, R., and Ouarda, T. B. M. J. (2017a). "Multivariate regional frequency analysis: Two new methods to increase the accuracy of measures." Advances in Water Resources, Vol. 107, pp. 290-300. https://doi.org/10.1016/j.advwatres.2017.07.006
- Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., and Mirabbasi, R. (2017b). "Regional bivariate modeling of droughts using L-comoments and copulas." Stochastic Environmental Research and Risk Assessment, Vol. 31, No. 5, pp. 1199-1210. https://doi.org/10.1007/s00477-016-1222-x
- Agilan, V., and Umamahesh, N. V. (2017). "What are the best covariates for developing non-stationary rainfall Intensity-Duration- Frequency relationship?" Advances in Water Resources, Vol. 101, pp. 11-22. https://doi.org/10.1016/j.advwatres.2016.12.016
- Ahn, H., Shin, J. Y., Jeong, C., and Heo, J. H. (2018). "Assessing applicability of self-organizing map for regional rainfall frequency analysis in South Korea." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 5, pp. 383-393. https://doi.org/10.3741/JKWRA.2018.51.5.383
- Alila, Y. (1999). "A hierarchical approach for the regionalization of precipitation annual maxima in Canada." Journal of Geophysical Research, Vol. 104, No. D24, pp. 31645-31655. https://doi.org/10.1029/1999JD900764
- Asadi, P., Engelke, S., and Davison, A. (2018). "Optimal regionalization of extreme value distributions for flood estimation." Journal of Hydrology, Vol. 556, pp. 182-193. https://doi.org/10.1016/j.jhydrol.2017.10.051
- Assis, L. C., Calijuri, M. L., Silva, D. D., Rocha, E. O., Fernandes, A. L. T., and Silva, F. F. (2018). "A model-based site selection approach associated with regional frequency analysis for modeling extreme rainfall depths in Minas Gerais state, Southeast Brazil." Stochastic Environmental Research and Risk Assessment, Vol. 32, pp. 469-484. https://doi.org/10.1007/s00477-017-1481-1
- Bracken, C., Holman, K. D., Rajagopalan, B., and Moradkhani, H. (2018). "A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency Analysis." Water Resources Research, Vol. 54, No. 1, pp. 243-255. https://doi.org/10.1002/2017WR020403
- Cannon, A. J. (2010). "A flexible nonlinear modeling framework for nonstationary generalized extreme value analysis in hydroclimatology." Hydrological Process, Vol. 24, No. 6, pp. 673-685. https://doi.org/10.1002/hyp.7506
- Cassalho, F., Beskow, S., de Mello, C. R., de Moura, M. M., de Oliveira, L. F., and de Aguiar, M. S. (2019). "Artificial intelligence for identifying hydrologically homogeneous regions: A state-of-the-art regional flood frequency analysis." Hydrological Processes, Vol. 33, No. 7, pp. 1101-1116. https://doi.org/10.1002/hyp.13388
- Chen, P. C., Wang, Y. H., You, G. J. Y., and Wei, C. C. (2017). "Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan." Journal of Hydrology, Vol. 545, pp. 197-211. https://doi.org/10.1016/j.jhydrol.2016.12.001
- Coles, S. (2001). An introduction to statistical modeling of extreme values. Springer, London.
- Cunderlik, J. M., and Burn, D. H. (2003). "Non-stationary pooled flood frequency analysis." Journal of Hydrology, Vol. 276, No. 1-4, pp. 210-223. https://doi.org/10.1016/S0022-1694(03)00062-3
- Dalrymple, T. (1960). Flood-frequency analyses, U.S. Geological Survey Water-Supply paper, 1543-A.
- Darwish, M. M., Fowler, H. J., Blenkinsop, S., and Tye, M. R. (2018). "A regional frequency analysis of UK sub-daily extreme precipitation and assessment of their seasonality." International Journal of Climatology, Vol. 38, No. 13, pp. 4758-4776. https://doi.org/10.1002/joc.5694
- De Michele, C., and Rosso, R. (2001). "Uncertainty assessment of regionalized flood frequency estimates." Journal of Hydrologic Engineering, Vol. 6, No. 6, pp. 453-459. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:6(453)
- Drissia, T. K., Jothiprakash, V., and Anitha, A. B. (2019). "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach." Water Resources Management, Vol. 33, No. 3, pp. 1013-1037. https://doi.org/10.1007/s11269-018-2162-7
- Fathian, F., and Dehghan, Z. (2019). "Using hybrid weighting-clustering approach for regional frequency analysis of maximum 24-hr rainfall based on climatic, geographical, and statistical attributes." International Journal of Climatology, Vol. 39, No. 11, pp. 4413-4428. https://doi.org/10.1002/joc.6082
- Forestieri, A., Conti, F. L., Blenkinsop, S., Cannarozzo, M., Fowler, H. J., and Noto, L. V. (2018). "Regional frequency analysis of extreme rainfall in Sicily (Italy)." International Journal of Climatology, Vol. 38, No. S1, pp. e698-e716. https://doi.org/10.1002/joc.5400
- Garcia, J. A., Martin, J., Naranjo, L., and Acero, F. J. (2018). "A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)." Hydrological Sciences Journal, Vol. 63, No. 6, pp. 878-894. https://doi.org/10.1080/02626667.2018.1457219
- Hanel, M., Buishand, T. A., and Ferro, C. A. T. (2009). "A nonstationary index flood model for precipitation extremes in transient regional climate model simulations." Journal of Geophysical Research, Vol. 114, p. D15107. https://doi.org/10.1029/2009JD011712
- Hardle, W., and Simar, L. (2003). Applied multivariate statistical analysis. Springer-Verlag, Heidelberg, Germany.
- Heo, J. H. (2016). Statistical hydrology, Koomibook, Korea
- Heo, J. H., Lee, Y. S., Shin, H., and Kim, K. D. (2007). "Application of regional rainfall frequency alaysis in South Korea(I): Rainfall Quantile Estimation." Journal of the Korean Society of Civil Engineers B, KSCE, Vol. 27, No. 2B, pp. 101-111.
- Hosking, J. R. M., and Wallis, J. R. (1997). Regional frequency analysis: an approach based on l-moments. Cambridge University Press, New York.
- Hosking, J. R. M., Wallis, J. R., and Wood, E. F. (1985). "An appraisal of the regional flood frequency procedure in the UK Flood Studies Report." Hydrological Sciences Journal, Vol. 30, No. 1, pp. 85-109. https://doi.org/10.1080/02626668509490973
- Hosking, J. R. M., and Wallis, J. R. (1993). "Some statistics useful in regional frequency analysis." Water Resources Research, Vol. 29, No. 2, pp. 271-281. https://doi.org/10.1029/92WR01980
- Hu, C., Xia, J., She, D., Xu, C., Zhang, L., Song, Z., and Zhao, L. (2019). "A modified regional L-moment method for regional extreme precipitation frequency analysis in the Songliao River Basin of China." Atmospheric Research, Vol. 230, p. 104629. https://doi.org/10.1016/j.atmosres.2019.104629
- Institute of Hydrology (IH) (1999). Flood estimation handbook. Institute of Hydrology, Wallingford, U.K.
- Intergovernmental Panel on Climate Change (IPCC) (2014). Climate change 2014: Synthesis Report, Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., and Meyer, L.A., eds.]. IPCC, Geneva, Switzerland, p. 151.
- Jang, H., Kim, S., and Heo, J. H. (2015). "Comparison study on the various forms of scale parameter for the nonstationary gumbel model." Journal of Korea Water Resources Association, KWRA, Vol. 48, No. 5, pp. 331-343. https://doi.org/10.3741/JKWRA.2015.48.5.331
- Jung, T. H., Kim, H., Kim, H., and Heo, J. H. (2019). "Selection of climate indices for nonstationary frequency analysis and estimation of rainfall quantile." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 39, No. 1, pp. 165-174. https://doi.org/10.12652/KSCE.2019.39.1.0165
- Kang, L., Jiang, S., Hu, X., and Li, C. (2019). "Evaluation of return period and risk in bivariate non-stationary flood frequency analysis." Water, Vol. 11, No. 1, p. 79. https://doi.org/10.3390/w11010079
- Katz, R. W. (2013). "Statistical methods for nonstationary extremes." In: Extremes in a Changing Climate, Edited by AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorrooshian, S., Chapter 2, Springer, London.
- Kwon, H. H., and Lee, J. J. (2011). "Seasonal rainfall outlook of Nakdong river basin using nonstationary frequency analysis model and climate information." Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 5, pp. 339-350. https://doi.org/10.3741/JKWRA.2011.44.5.339
- Kwon, H. H., Kim, J. Y., Kim, O. K., and Lee, J. J. (2013). "A development of regional frequency model based on hierarchical Bayesion model." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 1, pp. 13-24. https://doi.org/10.3741/JKWRA.2013.46.1.13
- Kim, N. W., Lee, J. E., Lee, J., and Jung, Y. (2016a). "Regional frequency analysis using spatial data extension method:I. An empirical investigation of regional flood frequency analysis." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 5, pp. 439-450. https://doi.org/10.3741/JKWRA.2016.49.5.439
- Kim, N. W., Lee, J. E., Lee, J., and Jung, Y. (2016b). "Regional frequency analysis using spatial data extension method:II. Flood frequency inference for ungaged watersheds." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 5, pp. 451-458. https://doi.org/10.3741/JKWRA.2016.49.5.451
- Kim, S., Ahn, H., Shin, H., and Heo, J. H. (2016c). "Development of spatial dependence formula of FORGEX method using rainfall data in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 12, pp. 1007-1014. https://doi.org/10.3741/JKWRA.2016.49.12.1007
- Kim, J. W., Nam, W. S., Shin, J. Y., and Heo, J. H. (2008). "Regional frequency analysis of south korean rainfall data using FORGEX method." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 4, pp. 405-412. https://doi.org/10.3741/JKWRA.2008.41.4.405
- Kim, J. Y., Kwon, H. H., and Lim, J. Y. (2014). "Development of hierarchical bayesian spatial regional frequency analysis model considering geographical characteristics." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 47, No. 5, pp. 469-482.
- Kim, J. Y., Kwon, H. H., and Lee, B. S. (2017a). "A Bayesian GLM model based regional frequency analysis using scaling properties of extreme rainfalls." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 37, No. 1, pp. 29-41. https://doi.org/10.12652/Ksce.2017.37.1.0029
- Kim, H., Kim, S., Shin, H., and Heo, J. H. (2017b). "Appropriate model selection methods for nonstationary generalized extreme value models." Journal of Hydrology, Vol. 547, pp. 557-574. https://doi.org/10.1016/j.jhydrol.2017.02.005
- Kim, H. (2018). A Nonstationary population index flood model for regional frequency analysis. Ph. D. dissertation, Yonsei University, Seoul, South Korea.
- Lee, Y. S., Heo, J. H., Nam, W. S., and Kim, K. D. (2007). "Application of regional rainfall frequency analysis in South Korea(II): Monte carlo simulation and determination of appropriate method." Journal of the Korean Society of Civil Engineers B, KSCE, Vol. 27, No. 2B, pp. 113-123.
- Lescesen, I., and Dolinaj, D. (2019). "Regional flood frequency analysis of the pannonian basin." Water, Vol. 11, No. 2, p. 193. https://doi.org/10.3390/w11020193
- Lettenmaier, D. P., Wallis, J. R., and Wood, E. F. (1987). "Effect of regional heterogeneity on flood Frequency estimaion." Water Resources Research, Vol. 23, No. 2, pp. 313-323. https://doi.org/10.1029/WR023i002p00313
- Liang, Y., Liu, S., Guo, Y., and Hua, H. (2017). "L-Moment-Based regional frequency analysis of annual extreme precipitation and its uncertainty analysis." Water Resources Management, Vol. 31, pp. 3899-3919. https://doi.org/10.1007/s11269-017-1715-5
- Lilienthal, J., Fried, R., and Schumann, A. (2018). "Homogeneity testing for skewed and cross-correlated data in regional flood frequency analysis." Journal of Hydrology, Vol. 556, pp. 557-571. https://doi.org/10.1016/j.jhydrol.2017.10.056
- Lopez, J., and Frances, F. (2013). "Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates." Hydrology and Earth System Sciences, Vol. 17, pp. 3189-3203. https://doi.org/10.5194/hess-17-3189-2013
- Lu, L. H. (1991). Statistical methods for regional flood frequency investigations. Ph.D. thesis, Cornell University, Ithaca, N.Y.
- Markiewicz, I., Strupczewski, W. G., Kochanek, K., and Singh, V. P. (2006). "Discussion on 'Non-stationary pooled flood frequency analysis." by J.M. Cunderlik and D.H. Burn [J.Hydrol. 276 (2003) 210-223]." Journal of Hydrology, Vol. 330, pp. 382-385. https://doi.org/10.1016/j.jhydrol.2006.02.029
- McCollum, J., and Beighley, E. (2019). "Flood frequency hydrology with limited data for the weser river basin, germany." Journal of Hydrologic Engineering, Vol. 24, No. 3, p. 05019002. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001713
- Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J. (2008). "Statinarity is dead: whither water management?" Science, Vol. 319, pp. 573-574. https://doi.org/10.1126/science.1151915
- Mondal, A., and Daniel, D. (2019). "Return levels under nonstationarity: the need to update infrastructure design strategies." Journal of Hydrologic Engineering, Vol. 24, No. 1, p. 04018060. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001738
- Mortuza, M. R., Moges, E., Demissie, Y., and Li, H. Y. (2019). "Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis." Theoretical and Applied Climatology, Vol. 135, No. 3-4, pp. 855-871. https://doi.org/10.1007/s00704-018-2407-7
- Nam, W., Shin, H., Jung, Y., Joo, K., and Heo, J. H. (2015a). "Delineation of the climatic rainfall regions of South Korea based on a multivariate analysis and regional rainfall fequency analyses." International Journal of Climatology, Vol. 35, No. 5, pp. 777-793. https://doi.org/10.1002/joc.4182
- Nam, W., Kim, S., Kim, H., Joo, K., and Heo, J. H. (2015b). "The evaluation of regional frequency analyses methods for nonstationary data." International Association of Hydrological Sciences, Vol. 371, pp. 95-98. https://doi.org/10.5194/piahs-371-95-2015
- Nandakumar, N. (1995). Estimation of extreme rainfalls for Victoia : application of the Forge method, Working document 95/7. Cooperative Research Centre for Catchment Hydrology, Monash University, Clayton, Victoria, Australia.
- Natural Environment Research Council (NERC) (1975). Flood studies report. Natural Environment Research Council, Cambridge, U.K.
- O'Brien, N. L., and Burn, D. H. (2014). "A nonstationary index-flood technique for estimating extreme quantiles for annual maximum streamflow." Journal of Hydrology, Vol. 519, pp. 2040-2048. https://doi.org/10.1016/j.jhydrol.2014.09.041
- Ouali, D., Chebana, F., and Ouarda, T. B. M. J. (2017). "Fully nonlinear statistical and machine-learning approaches for hydrological frequency estimation at ungauged sites." Journal of Advances in Modeling Earth Systems, Vol. 9, No. 2, pp. 1292-1306. https://doi.org/10.1002/2016MS000830
- Ouarda, T. B. M. J., and Charron, C. (2019). "Changes in the distribution of hydro-climatic extremes in a non-stationary framework." Scientific Reports, Vol. 9, No. 1, pp. 8104-8112. https://doi.org/10.1038/s41598-019-44603-7
- Read, L. K., and Vogel, R. M. (2015). "Reliability, return periods, and risk under nonstationarity." Water Resources Research, Vol. 51, No. 8, pp. 6381-6398. https://doi.org/10.1002/2015WR017089
- Requena, A. I., Chebana, F., and Ouarda, T. B. M. J. (2017). "Heterogeneity measures in hydrological frequency analysis: review and new developments." Hydrology and Earth System Sciences, Vol. 21, pp. 1651-1668. https://doi.org/10.5194/hess-21-1651-2017
- Roth, M., Buishand, T. A., Jongbloed, G., Klein Tank, A. M. G., and van Zanten, J. H. (2012). "A regional peaks-over-threshold model in a nonstationary climate." Water Resources Research, Vol. 48, p .W11533.
- Salas, J. D., and Obeysekera, M. (2014). "Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events." Journal of Hydrologic Engineering, Vol. 19, No. 3, pp. 554-568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820
- Schaefer, M. G. (1990). "Regional analyses of precipitation annual maxima in washington state." Water Resources Research, Vol. 26, No. 1, pp. 119-131. https://doi.org/10.1029/WR026i001p00119
- Sen, P. K. (1968). "Estimates of the regression coefficient based on Kendall's tau." Journal of the American Statistical Association, Vol. 63, No. 324, pp. 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
- Shin, J. Y., Jeong, C., Joo, K., and Heo, J. H. (2018). "Hydrological homogeneous region delineation for bivariate frequency analysis of extreme rainfalls in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 1, pp. 49-60. https://doi.org/10.3741/JKWRA.2018.51.1.49
- Silva, T., Naghettini, M., and Portela, M. M. (2016). "On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates." Stochastic Environmental Research and Risk Assessment, Vol. 30, pp. 207-224. https://doi.org/10.1007/s00477-015-1072-y
- Simkova, T. (2017). "Homogeneity testing for spatially correlated data in multivariate regional frequency analysis." Water Resources Research, Vol. 53, pp. 7012-7028. https://doi.org/10.1002/2016WR020295
- Sung, J. H., Kim, Y. O., and Jeon, J. J. (2018). "Application of distribution-free nonstationary regional frequency analysis based on L-moments." Theoretical and Applied Climatology, Vol. 133, pp. 1219-1233. https://doi.org/10.1007/s00704-017-2249-8
- Svensson, C., and Jones, D. A. (2010). "Review of rainfall frequency estimation methods." Journal of Flood Risk Management, Vol. 3, pp. 296-313. https://doi.org/10.1111/j.1753-318X.2010.01079.x
- Thorarinsdottir, T. L., Hellton, K. H., Steinbakk, G. H., Schlichting, L., and Engeland, K. (2018). "Bayesian regional flood frequency analysis for large catchments." Water Resources Research, Vol. 54, No. 9, pp. 6929-6947. https://doi.org/10.1029/2017WR022460
- Wang, Z., Zeng, Z., Lai, C., Lin, W., Wu, X., and Chen, X. (2017). "A regional frequency analysis of precipitation extremes in Mainland China with fuzzy c-means and L-moments approaches." International Journal of Climatology, Vol. 37, No. S1, pp. 429-444. https://doi.org/10.1002/joc.5013
- Yin, Y., Chen, H., Xu, C. Y., Xu, W., Chen, C., and Sun, S. (2016). "Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China." Theoretical and Applied Climatology, Vol. 124, No. 3-4, pp. 1005-1022. https://doi.org/10.1007/s00704-015-1478-y
- Zaifoglu, H., Akintug, B., and Yanmaz, A. M. (2018). "Regional frequency analysis of precipitation using time series clustering approaches." Journal of Hydrologic Engineering, Vol. 23, No. 6, p. 05018007. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001659