DOI QR코드

DOI QR Code

Regional frequency analysis for stationary and nonstationary hydrological data

정상성 및 비정상성 수문자료의 지역빈도해석

  • Heo, Jun-Haenga (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Hanbeen (School of Civil and Environmental Engineering, Yonsei University)
  • 허준행 (연세대학교 공과대학 건설환경공학과) ;
  • 김한빈 (연세대학교 공과대학 건설환경공학과)
  • Received : 2019.07.31
  • Accepted : 2019.10.04
  • Published : 2019.10.31

Abstract

To estimate accurate design quantiles considering statistical characteristics of hydrological data is one of the most important procedures in the design of hydraulic structures. While at-site frequency analysis estimates design quantile using observed data at a site of interest, regional frequency analysis (RFA) utilizes a number of sites included in a hydrologically homogeneous region. Therefore, RFA could provide a more accurate design quantile at ungauged site or sites with short observation period. In this review article, RFA is classified into stationary RFA and nonstationary RFA depending on the characteristic of hydrological data, and the basic concept, procedure, and application of each technique are explained in detail focused on the index flood method. Additionally, a review of the state of the art for RFA procedure is presented. This paper is finalized by describing the stationary regional rainfall frequency analysis over South Korea contained in the amendment of "Standard guidelines for design flood estimation" and various future study topics related to nonstationary RFA.

수공구조물의 설계 시 빈도해석을 통해 수문자료의 통계적 특성을 고려하여 설계빈도에 대한 정확한 확률수문량을 산정하는 것은 매우 중요한 절차이다. 지역빈도해석은 대상 지점의 자료만을 이용하여 확률수문량을 산정하는 지점빈도해석과 달리 수문학적으로 동질한 것으로 판단되는 주변지점들의 자료를 모두 포함하여 빈도해석을 수행하므로 미계측 지점 또는 자료 보유년수가 짧은 지점에서 보다 정확한 확률수문량 산정이 가능하다. 본 총설논문에서는 이러한 지역빈도해석 기법을 수문자료의 특성에 따라 정상성 지역빈도해석과 비정상성 지역빈도해석으로 구분하고, 각 방법의 기본이론과 절차 및 관련 연구를 홍수지수법을 중심으로 상세히 설명하였으며 최신 연구동향을 정리하였다. "홍수량 산정 표준지침"의 개정을 통해 포함되는 정상성 지역빈도해석에 대해 언급하고, 비정상성 지역빈도해석과 관련한 향후 연구주제를 기술하며 논문을 마무리 한다.

Keywords

References

  1. Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., Mirabbasi, R., and Ouarda, T. B. M. J. (2017a). "Multivariate regional frequency analysis: Two new methods to increase the accuracy of measures." Advances in Water Resources, Vol. 107, pp. 290-300. https://doi.org/10.1016/j.advwatres.2017.07.006
  2. Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., and Mirabbasi, R. (2017b). "Regional bivariate modeling of droughts using L-comoments and copulas." Stochastic Environmental Research and Risk Assessment, Vol. 31, No. 5, pp. 1199-1210. https://doi.org/10.1007/s00477-016-1222-x
  3. Agilan, V., and Umamahesh, N. V. (2017). "What are the best covariates for developing non-stationary rainfall Intensity-Duration- Frequency relationship?" Advances in Water Resources, Vol. 101, pp. 11-22. https://doi.org/10.1016/j.advwatres.2016.12.016
  4. Ahn, H., Shin, J. Y., Jeong, C., and Heo, J. H. (2018). "Assessing applicability of self-organizing map for regional rainfall frequency analysis in South Korea." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 5, pp. 383-393. https://doi.org/10.3741/JKWRA.2018.51.5.383
  5. Alila, Y. (1999). "A hierarchical approach for the regionalization of precipitation annual maxima in Canada." Journal of Geophysical Research, Vol. 104, No. D24, pp. 31645-31655. https://doi.org/10.1029/1999JD900764
  6. Asadi, P., Engelke, S., and Davison, A. (2018). "Optimal regionalization of extreme value distributions for flood estimation." Journal of Hydrology, Vol. 556, pp. 182-193. https://doi.org/10.1016/j.jhydrol.2017.10.051
  7. Assis, L. C., Calijuri, M. L., Silva, D. D., Rocha, E. O., Fernandes, A. L. T., and Silva, F. F. (2018). "A model-based site selection approach associated with regional frequency analysis for modeling extreme rainfall depths in Minas Gerais state, Southeast Brazil." Stochastic Environmental Research and Risk Assessment, Vol. 32, pp. 469-484. https://doi.org/10.1007/s00477-017-1481-1
  8. Bracken, C., Holman, K. D., Rajagopalan, B., and Moradkhani, H. (2018). "A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency Analysis." Water Resources Research, Vol. 54, No. 1, pp. 243-255. https://doi.org/10.1002/2017WR020403
  9. Cannon, A. J. (2010). "A flexible nonlinear modeling framework for nonstationary generalized extreme value analysis in hydroclimatology." Hydrological Process, Vol. 24, No. 6, pp. 673-685. https://doi.org/10.1002/hyp.7506
  10. Cassalho, F., Beskow, S., de Mello, C. R., de Moura, M. M., de Oliveira, L. F., and de Aguiar, M. S. (2019). "Artificial intelligence for identifying hydrologically homogeneous regions: A state-of-the-art regional flood frequency analysis." Hydrological Processes, Vol. 33, No. 7, pp. 1101-1116. https://doi.org/10.1002/hyp.13388
  11. Chen, P. C., Wang, Y. H., You, G. J. Y., and Wei, C. C. (2017). "Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan." Journal of Hydrology, Vol. 545, pp. 197-211. https://doi.org/10.1016/j.jhydrol.2016.12.001
  12. Coles, S. (2001). An introduction to statistical modeling of extreme values. Springer, London.
  13. Cunderlik, J. M., and Burn, D. H. (2003). "Non-stationary pooled flood frequency analysis." Journal of Hydrology, Vol. 276, No. 1-4, pp. 210-223. https://doi.org/10.1016/S0022-1694(03)00062-3
  14. Dalrymple, T. (1960). Flood-frequency analyses, U.S. Geological Survey Water-Supply paper, 1543-A.
  15. Darwish, M. M., Fowler, H. J., Blenkinsop, S., and Tye, M. R. (2018). "A regional frequency analysis of UK sub-daily extreme precipitation and assessment of their seasonality." International Journal of Climatology, Vol. 38, No. 13, pp. 4758-4776. https://doi.org/10.1002/joc.5694
  16. De Michele, C., and Rosso, R. (2001). "Uncertainty assessment of regionalized flood frequency estimates." Journal of Hydrologic Engineering, Vol. 6, No. 6, pp. 453-459. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:6(453)
  17. Drissia, T. K., Jothiprakash, V., and Anitha, A. B. (2019). "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach." Water Resources Management, Vol. 33, No. 3, pp. 1013-1037. https://doi.org/10.1007/s11269-018-2162-7
  18. Fathian, F., and Dehghan, Z. (2019). "Using hybrid weighting-clustering approach for regional frequency analysis of maximum 24-hr rainfall based on climatic, geographical, and statistical attributes." International Journal of Climatology, Vol. 39, No. 11, pp. 4413-4428. https://doi.org/10.1002/joc.6082
  19. Forestieri, A., Conti, F. L., Blenkinsop, S., Cannarozzo, M., Fowler, H. J., and Noto, L. V. (2018). "Regional frequency analysis of extreme rainfall in Sicily (Italy)." International Journal of Climatology, Vol. 38, No. S1, pp. e698-e716. https://doi.org/10.1002/joc.5400
  20. Garcia, J. A., Martin, J., Naranjo, L., and Acero, F. J. (2018). "A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)." Hydrological Sciences Journal, Vol. 63, No. 6, pp. 878-894. https://doi.org/10.1080/02626667.2018.1457219
  21. Hanel, M., Buishand, T. A., and Ferro, C. A. T. (2009). "A nonstationary index flood model for precipitation extremes in transient regional climate model simulations." Journal of Geophysical Research, Vol. 114, p. D15107. https://doi.org/10.1029/2009JD011712
  22. Hardle, W., and Simar, L. (2003). Applied multivariate statistical analysis. Springer-Verlag, Heidelberg, Germany.
  23. Heo, J. H. (2016). Statistical hydrology, Koomibook, Korea
  24. Heo, J. H., Lee, Y. S., Shin, H., and Kim, K. D. (2007). "Application of regional rainfall frequency alaysis in South Korea(I): Rainfall Quantile Estimation." Journal of the Korean Society of Civil Engineers B, KSCE, Vol. 27, No. 2B, pp. 101-111.
  25. Hosking, J. R. M., and Wallis, J. R. (1997). Regional frequency analysis: an approach based on l-moments. Cambridge University Press, New York.
  26. Hosking, J. R. M., Wallis, J. R., and Wood, E. F. (1985). "An appraisal of the regional flood frequency procedure in the UK Flood Studies Report." Hydrological Sciences Journal, Vol. 30, No. 1, pp. 85-109. https://doi.org/10.1080/02626668509490973
  27. Hosking, J. R. M., and Wallis, J. R. (1993). "Some statistics useful in regional frequency analysis." Water Resources Research, Vol. 29, No. 2, pp. 271-281. https://doi.org/10.1029/92WR01980
  28. Hu, C., Xia, J., She, D., Xu, C., Zhang, L., Song, Z., and Zhao, L. (2019). "A modified regional L-moment method for regional extreme precipitation frequency analysis in the Songliao River Basin of China." Atmospheric Research, Vol. 230, p. 104629. https://doi.org/10.1016/j.atmosres.2019.104629
  29. Institute of Hydrology (IH) (1999). Flood estimation handbook. Institute of Hydrology, Wallingford, U.K.
  30. Intergovernmental Panel on Climate Change (IPCC) (2014). Climate change 2014: Synthesis Report, Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., and Meyer, L.A., eds.]. IPCC, Geneva, Switzerland, p. 151.
  31. Jang, H., Kim, S., and Heo, J. H. (2015). "Comparison study on the various forms of scale parameter for the nonstationary gumbel model." Journal of Korea Water Resources Association, KWRA, Vol. 48, No. 5, pp. 331-343. https://doi.org/10.3741/JKWRA.2015.48.5.331
  32. Jung, T. H., Kim, H., Kim, H., and Heo, J. H. (2019). "Selection of climate indices for nonstationary frequency analysis and estimation of rainfall quantile." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 39, No. 1, pp. 165-174. https://doi.org/10.12652/KSCE.2019.39.1.0165
  33. Kang, L., Jiang, S., Hu, X., and Li, C. (2019). "Evaluation of return period and risk in bivariate non-stationary flood frequency analysis." Water, Vol. 11, No. 1, p. 79. https://doi.org/10.3390/w11010079
  34. Katz, R. W. (2013). "Statistical methods for nonstationary extremes." In: Extremes in a Changing Climate, Edited by AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorrooshian, S., Chapter 2, Springer, London.
  35. Kwon, H. H., and Lee, J. J. (2011). "Seasonal rainfall outlook of Nakdong river basin using nonstationary frequency analysis model and climate information." Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 5, pp. 339-350. https://doi.org/10.3741/JKWRA.2011.44.5.339
  36. Kwon, H. H., Kim, J. Y., Kim, O. K., and Lee, J. J. (2013). "A development of regional frequency model based on hierarchical Bayesion model." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 1, pp. 13-24. https://doi.org/10.3741/JKWRA.2013.46.1.13
  37. Kim, N. W., Lee, J. E., Lee, J., and Jung, Y. (2016a). "Regional frequency analysis using spatial data extension method:I. An empirical investigation of regional flood frequency analysis." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 5, pp. 439-450. https://doi.org/10.3741/JKWRA.2016.49.5.439
  38. Kim, N. W., Lee, J. E., Lee, J., and Jung, Y. (2016b). "Regional frequency analysis using spatial data extension method:II. Flood frequency inference for ungaged watersheds." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 5, pp. 451-458. https://doi.org/10.3741/JKWRA.2016.49.5.451
  39. Kim, S., Ahn, H., Shin, H., and Heo, J. H. (2016c). "Development of spatial dependence formula of FORGEX method using rainfall data in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 12, pp. 1007-1014. https://doi.org/10.3741/JKWRA.2016.49.12.1007
  40. Kim, J. W., Nam, W. S., Shin, J. Y., and Heo, J. H. (2008). "Regional frequency analysis of south korean rainfall data using FORGEX method." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 4, pp. 405-412. https://doi.org/10.3741/JKWRA.2008.41.4.405
  41. Kim, J. Y., Kwon, H. H., and Lim, J. Y. (2014). "Development of hierarchical bayesian spatial regional frequency analysis model considering geographical characteristics." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 47, No. 5, pp. 469-482.
  42. Kim, J. Y., Kwon, H. H., and Lee, B. S. (2017a). "A Bayesian GLM model based regional frequency analysis using scaling properties of extreme rainfalls." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 37, No. 1, pp. 29-41. https://doi.org/10.12652/Ksce.2017.37.1.0029
  43. Kim, H., Kim, S., Shin, H., and Heo, J. H. (2017b). "Appropriate model selection methods for nonstationary generalized extreme value models." Journal of Hydrology, Vol. 547, pp. 557-574. https://doi.org/10.1016/j.jhydrol.2017.02.005
  44. Kim, H. (2018). A Nonstationary population index flood model for regional frequency analysis. Ph. D. dissertation, Yonsei University, Seoul, South Korea.
  45. Lee, Y. S., Heo, J. H., Nam, W. S., and Kim, K. D. (2007). "Application of regional rainfall frequency analysis in South Korea(II): Monte carlo simulation and determination of appropriate method." Journal of the Korean Society of Civil Engineers B, KSCE, Vol. 27, No. 2B, pp. 113-123.
  46. Lescesen, I., and Dolinaj, D. (2019). "Regional flood frequency analysis of the pannonian basin." Water, Vol. 11, No. 2, p. 193. https://doi.org/10.3390/w11020193
  47. Lettenmaier, D. P., Wallis, J. R., and Wood, E. F. (1987). "Effect of regional heterogeneity on flood Frequency estimaion." Water Resources Research, Vol. 23, No. 2, pp. 313-323. https://doi.org/10.1029/WR023i002p00313
  48. Liang, Y., Liu, S., Guo, Y., and Hua, H. (2017). "L-Moment-Based regional frequency analysis of annual extreme precipitation and its uncertainty analysis." Water Resources Management, Vol. 31, pp. 3899-3919. https://doi.org/10.1007/s11269-017-1715-5
  49. Lilienthal, J., Fried, R., and Schumann, A. (2018). "Homogeneity testing for skewed and cross-correlated data in regional flood frequency analysis." Journal of Hydrology, Vol. 556, pp. 557-571. https://doi.org/10.1016/j.jhydrol.2017.10.056
  50. Lopez, J., and Frances, F. (2013). "Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates." Hydrology and Earth System Sciences, Vol. 17, pp. 3189-3203. https://doi.org/10.5194/hess-17-3189-2013
  51. Lu, L. H. (1991). Statistical methods for regional flood frequency investigations. Ph.D. thesis, Cornell University, Ithaca, N.Y.
  52. Markiewicz, I., Strupczewski, W. G., Kochanek, K., and Singh, V. P. (2006). "Discussion on 'Non-stationary pooled flood frequency analysis." by J.M. Cunderlik and D.H. Burn [J.Hydrol. 276 (2003) 210-223]." Journal of Hydrology, Vol. 330, pp. 382-385. https://doi.org/10.1016/j.jhydrol.2006.02.029
  53. McCollum, J., and Beighley, E. (2019). "Flood frequency hydrology with limited data for the weser river basin, germany." Journal of Hydrologic Engineering, Vol. 24, No. 3, p. 05019002. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001713
  54. Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J. (2008). "Statinarity is dead: whither water management?" Science, Vol. 319, pp. 573-574. https://doi.org/10.1126/science.1151915
  55. Mondal, A., and Daniel, D. (2019). "Return levels under nonstationarity: the need to update infrastructure design strategies." Journal of Hydrologic Engineering, Vol. 24, No. 1, p. 04018060. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001738
  56. Mortuza, M. R., Moges, E., Demissie, Y., and Li, H. Y. (2019). "Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis." Theoretical and Applied Climatology, Vol. 135, No. 3-4, pp. 855-871. https://doi.org/10.1007/s00704-018-2407-7
  57. Nam, W., Shin, H., Jung, Y., Joo, K., and Heo, J. H. (2015a). "Delineation of the climatic rainfall regions of South Korea based on a multivariate analysis and regional rainfall fequency analyses." International Journal of Climatology, Vol. 35, No. 5, pp. 777-793. https://doi.org/10.1002/joc.4182
  58. Nam, W., Kim, S., Kim, H., Joo, K., and Heo, J. H. (2015b). "The evaluation of regional frequency analyses methods for nonstationary data." International Association of Hydrological Sciences, Vol. 371, pp. 95-98. https://doi.org/10.5194/piahs-371-95-2015
  59. Nandakumar, N. (1995). Estimation of extreme rainfalls for Victoia : application of the Forge method, Working document 95/7. Cooperative Research Centre for Catchment Hydrology, Monash University, Clayton, Victoria, Australia.
  60. Natural Environment Research Council (NERC) (1975). Flood studies report. Natural Environment Research Council, Cambridge, U.K.
  61. O'Brien, N. L., and Burn, D. H. (2014). "A nonstationary index-flood technique for estimating extreme quantiles for annual maximum streamflow." Journal of Hydrology, Vol. 519, pp. 2040-2048. https://doi.org/10.1016/j.jhydrol.2014.09.041
  62. Ouali, D., Chebana, F., and Ouarda, T. B. M. J. (2017). "Fully nonlinear statistical and machine-learning approaches for hydrological frequency estimation at ungauged sites." Journal of Advances in Modeling Earth Systems, Vol. 9, No. 2, pp. 1292-1306. https://doi.org/10.1002/2016MS000830
  63. Ouarda, T. B. M. J., and Charron, C. (2019). "Changes in the distribution of hydro-climatic extremes in a non-stationary framework." Scientific Reports, Vol. 9, No. 1, pp. 8104-8112. https://doi.org/10.1038/s41598-019-44603-7
  64. Read, L. K., and Vogel, R. M. (2015). "Reliability, return periods, and risk under nonstationarity." Water Resources Research, Vol. 51, No. 8, pp. 6381-6398. https://doi.org/10.1002/2015WR017089
  65. Requena, A. I., Chebana, F., and Ouarda, T. B. M. J. (2017). "Heterogeneity measures in hydrological frequency analysis: review and new developments." Hydrology and Earth System Sciences, Vol. 21, pp. 1651-1668. https://doi.org/10.5194/hess-21-1651-2017
  66. Roth, M., Buishand, T. A., Jongbloed, G., Klein Tank, A. M. G., and van Zanten, J. H. (2012). "A regional peaks-over-threshold model in a nonstationary climate." Water Resources Research, Vol. 48, p .W11533.
  67. Salas, J. D., and Obeysekera, M. (2014). "Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events." Journal of Hydrologic Engineering, Vol. 19, No. 3, pp. 554-568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820
  68. Schaefer, M. G. (1990). "Regional analyses of precipitation annual maxima in washington state." Water Resources Research, Vol. 26, No. 1, pp. 119-131. https://doi.org/10.1029/WR026i001p00119
  69. Sen, P. K. (1968). "Estimates of the regression coefficient based on Kendall's tau." Journal of the American Statistical Association, Vol. 63, No. 324, pp. 1379-1389. https://doi.org/10.1080/01621459.1968.10480934
  70. Shin, J. Y., Jeong, C., Joo, K., and Heo, J. H. (2018). "Hydrological homogeneous region delineation for bivariate frequency analysis of extreme rainfalls in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 1, pp. 49-60. https://doi.org/10.3741/JKWRA.2018.51.1.49
  71. Silva, T., Naghettini, M., and Portela, M. M. (2016). "On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates." Stochastic Environmental Research and Risk Assessment, Vol. 30, pp. 207-224. https://doi.org/10.1007/s00477-015-1072-y
  72. Simkova, T. (2017). "Homogeneity testing for spatially correlated data in multivariate regional frequency analysis." Water Resources Research, Vol. 53, pp. 7012-7028. https://doi.org/10.1002/2016WR020295
  73. Sung, J. H., Kim, Y. O., and Jeon, J. J. (2018). "Application of distribution-free nonstationary regional frequency analysis based on L-moments." Theoretical and Applied Climatology, Vol. 133, pp. 1219-1233. https://doi.org/10.1007/s00704-017-2249-8
  74. Svensson, C., and Jones, D. A. (2010). "Review of rainfall frequency estimation methods." Journal of Flood Risk Management, Vol. 3, pp. 296-313. https://doi.org/10.1111/j.1753-318X.2010.01079.x
  75. Thorarinsdottir, T. L., Hellton, K. H., Steinbakk, G. H., Schlichting, L., and Engeland, K. (2018). "Bayesian regional flood frequency analysis for large catchments." Water Resources Research, Vol. 54, No. 9, pp. 6929-6947. https://doi.org/10.1029/2017WR022460
  76. Wang, Z., Zeng, Z., Lai, C., Lin, W., Wu, X., and Chen, X. (2017). "A regional frequency analysis of precipitation extremes in Mainland China with fuzzy c-means and L-moments approaches." International Journal of Climatology, Vol. 37, No. S1, pp. 429-444. https://doi.org/10.1002/joc.5013
  77. Yin, Y., Chen, H., Xu, C. Y., Xu, W., Chen, C., and Sun, S. (2016). "Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China." Theoretical and Applied Climatology, Vol. 124, No. 3-4, pp. 1005-1022. https://doi.org/10.1007/s00704-015-1478-y
  78. Zaifoglu, H., Akintug, B., and Yanmaz, A. M. (2018). "Regional frequency analysis of precipitation using time series clustering approaches." Journal of Hydrologic Engineering, Vol. 23, No. 6, p. 05018007. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001659