DOI QR코드

DOI QR Code

Multiplexed single-molecule flow-stretching bead assay for DNA enzymology

  • Lee, Ryanggeun (Department of Physics, Pohang University of Science and Technology (POSTECH)) ;
  • Yang, Keunsang (School of Interdisciplinary Bioscience and Bioengineering, POSTECH) ;
  • Lee, Jong-Bong (Department of Physics, Pohang University of Science and Technology (POSTECH))
  • 투고 : 2019.07.09
  • 발행 : 2019.10.31

초록

Single-molecule techniques have been used successfully to visualize real-time enzymatic activities, revealing transient complex properties and heterogeneity of various biological events. Especially, conventional force spectroscopy including optical tweezers and magnetic tweezers has been widely used to monitor change in DNA length by enzymes with high spatiotemporal resolutions of ~nanometers and ~milliseconds. However, DNA metabolism results from coordination of a number of components during the processes, requiring efficient monitoring of a complex of proteins catalyzing DNA substrates. In this min-review, we will introduce a simple and multiplexed single-molecule assay to detect DNA substrates catalyzed by enzymes with high-throughput data collection. We conclude with a perspective of possible directions that enhance capability of the assay to reveal complex biological events with higher resolution.

키워드

참고문헌

  1. Miller H, Zhou Z, Shepherd J, Wollman AJM and Leake MC (2018) Single-molecule techniques in biophysics: a review of the progress in methods and applications. Rep Prog Phys 81, 024601 https://doi.org/10.1088/1361-6633/aa8a02
  2. Zlatanova J and van Holde K (2006) Single-Molecule Biology: What Is It and How Does It Work? Mol Cell 24, 317-329 https://doi.org/10.1016/j.molcel.2006.10.017
  3. Deniz AA, Mukhopadhyay S and Lemke EA (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J Royal Soc Interface 5, 15-45 https://doi.org/10.1098/rsif.2007.1021
  4. Xie XS and Lu HP (1999) Single-molecule enzymology. J Biol Chem 274, 15967-15970 https://doi.org/10.1074/jbc.274.23.15967
  5. Juette MF, Terry DS, Wasserman MR et al (2014) T he bright future of single-molecule fluorescence imaging. Curr Opin Chem Biol 20, 103-111 https://doi.org/10.1016/j.cbpa.2014.05.010
  6. Neuman KC and Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5, 491-505 https://doi.org/10.1038/nmeth.1218
  7. Morin JA, Cao FJ, Lazaro JM et al (2012) Active DNA unwinding dynamics during processive DNA replication. Proc Natl Acad Sci U S A 109, 8115-8120 https://doi.org/10.1073/pnas.1204759109
  8. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R and Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460-465 https://doi.org/10.1038/nature04268
  9. Wen JD, Lancaster L, Hodges C et al (2008) Following translation by single ribosomes one codon at a time. Nature 452, 598-603 https://doi.org/10.1038/nature06716
  10. Strick TR, Croquette V and Bensimon D (2000) Singlemolecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404, 901-904 https://doi.org/10.1038/35009144
  11. Fan J, Leroux-Coyau M, Savery NJ and Strick TR (2016) Reconstruction of bacterial transcription-coupled repair at single-molecule resolution. Nature 536, 234-237 https://doi.org/10.1038/nature19080
  12. Neuman KC, Lionnet T and Allemand JF (2007) S ingle-Molecule Micromanipulation Techniques. Annu Rev Mater Res 37, 33-67 https://doi.org/10.1146/annurev.matsci.37.052506.084336
  13. Padgett M and Di Leonardo R (2011) Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip 11, 1196 https://doi.org/10.1039/c0lc00526f
  14. Ribeck N and Saleh OA (2008) Multiplexed singlemolecule measurements with magnetic tweezers. Rev Sci Instrum 79, 094301 https://doi.org/10.1063/1.2981687
  15. De Vlaminck I, Henighan T, van Loenhout MT, Burnham DR and Dekker C (2012) Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PLoS One 7, e41432 https://doi.org/10.1371/journal.pone.0041432
  16. Sitters G, Kamsma D, Thalhammer G, Ritsch-Marte M, Peterman EJG and Wuite GJL (2015) Acoustic force spectroscopy. Nat Methods 12, 47-50 https://doi.org/10.1038/nmeth.3183
  17. Kulczyk AW, Tanner NA, Loparo JJ, Richardson CC and van Oijen AM (2010) Direct observation of enzymes replicating DNA using a single-molecule DNA stretching assay. J Vis Exp 36, 1689
  18. Thompson RE, Larson DR and Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82, 2775-2783 https://doi.org/10.1016/S0006-3495(02)75618-X
  19. van Oijen AM, Blainey PC, Crampton DJ, Richardson CC, Ellenberger T and Xie XS (2003) Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235-1238 https://doi.org/10.1126/science.1084387
  20. Lee J-B, Hite RK, Hamdan SM, Sunney Xie X, Richardson CC and van Oijen AM (2006) DNA primase acts as a molecular brake in DNA replication. Nature 439, 621-624 https://doi.org/10.1038/nature04317
  21. Hamdan SM, Loparo JJ, Takahashi M, Richardson CC and van Oijen AM (2009) Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature 457, 336-339 https://doi.org/10.1038/nature07512
  22. Tanner NA, Hamdan SM, Jergic S et al (2008) Singlemolecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 15, 998
  23. Park J, Jeon Y, In D, Fishel R, Ban C and Lee JB (2010) Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS One 5, e15496 https://doi.org/10.1371/journal.pone.0015496
  24. Jeon Y, Kim D, Martin-Lopez JV et al (2016) Dynamic control of strand excision during human DNA mismatch repair. Proc Natl Acad Sci U S A 113, 3281-3286 https://doi.org/10.1073/pnas.1523748113
  25. Jergic S, Horan NP, Elshenawy MM et al (2013) A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode. EMBO J 32, 1322-1333 https://doi.org/10.1038/emboj.2012.347
  26. Park J, Jergic S, Jeon Y et al (2018) Dynamics of Proofreading by the E. coli Pol III Replicase. Cell Chem Biol 25, 57-66.e54 https://doi.org/10.1016/j.chembiol.2017.09.008
  27. Elshenawy MM, Jergic S, Xu ZQ et al (2015) Replisome speed determines the efficiency of the Tus-Ter replication termination barrier. Nature 525, 394-398 https://doi.org/10.1038/nature14866
  28. Harada Y, Arai Y, Yasuda R et al (1999) Tying a molecular knot with optical tweezers. Nature 399, 446-448 https://doi.org/10.1038/20894
  29. Bianco PR, Brewer LR, Corzett M, et al (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374-378 https://doi.org/10.1038/35053131
  30. Sarangapani KK, Duro E, Deng Y et al (2014) Sister kinetochores are mechanically fused during meiosis I in yeast. Science 346, 248-251 https://doi.org/10.1126/science.1256729
  31. Chang M , Oh J, Kim Y , Hohng S and Lee JB (2017) Extended depth of field for single biomolecule optical imaging-force spectroscopy. Opt Express 25, 32189 https://doi.org/10.1364/OE.25.032189
  32. Grashoff C, Hoffman BD, Brenner MD et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263-266 https://doi.org/10.1038/nature09198
  33. Hohng S, Zhou R, Nahas MK et al (2007) Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction. Science 318, 279-283 https://doi.org/10.1126/science.1146113
  34. Zhou R, Kozlov Alexander G, Roy R et al (2011) SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell 146, 222-232 https://doi.org/10.1016/j.cell.2011.06.036
  35. Comstock MJ, Whitley KD, Jia H et al (2015) Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 348, 352-354 https://doi.org/10.1126/science.aaa0130
  36. Heller I, Sitters G, Broekmans OD et al (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10, 910-916 https://doi.org/10.1038/nmeth.2599
  37. Graham JS, Johnson RC and Marko JF (2011) Concentrationdependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res 39, 2249-2259 https://doi.org/10.1093/nar/gkq1140
  38. Hugel T, Michaelis J, Hetherington CL et al (2007) Experimental Test of Connector Rotation during DNA Packaging into Bacteriophage ${\varphi}29$ Capsids. PLoS Biol 5, e59 https://doi.org/10.1371/journal.pbio.0050059
  39. Madariaga-Marcos J, Hormeno S, Pastrana CL, Fisher GLM, Dillingham MS and Moreno-Herrero F (2018) Force determination in lateral magnetic tweezers combined with TIRF microscopy. Nanoscale 10, 4579-4590 https://doi.org/10.1039/C7NR07344E
  40. Lee M, Kim SH and Hong SC (2010) Minute negative superhelicity is sufficient to induce the B-Z transition in the presence of low tension. Proc Natl Acad Sci U S A 107, 4985-4990 https://doi.org/10.1073/pnas.0911528107
  41. Loparo JJ, Kulczyk AW, Richardson CC and van Oijen AM. (2011) Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc Natl Acad Sci U S A 108, 3584-3589 https://doi.org/10.1073/pnas.1018824108