DOI QR코드

DOI QR Code

엔터프라이즈 환경의 딥 러닝을 활용한 이미지 예측 시스템 아키텍처

Using the Deep Learning for the System Architecture of Image Prediction

  • 천은영 (충남대학교 컴퓨터공학과) ;
  • 최성자 (가천대학교 SW교육센터)
  • Cheon, Eun Young (Dept. of Computer Science & Engineering Chungnam National University) ;
  • Choi, Sung-Ja (Dept. of Software Education Center, Gachon University)
  • 투고 : 2019.08.06
  • 심사 : 2019.10.20
  • 발행 : 2019.10.28

초록

본 논문에서는 엔터프라이즈 환경에서의 딥 러닝에 대한 이미지 예측 시스템 아키텍처를 제안한다. 엔터프라이즈 환경에 대해 인공지능 플랫폼으로 변환을 쉽게 하고, 인공지능 플랫폼이 파이선에 집중되어서 자바 중심의 엔터프라이즈 개발이 어려운 단점을 개선하기 위해 자바 중심의 아키텍처에서도 충분한 딥 러닝 서비스의 개발과 수정이 가능하도록 한다. 또한, 제안된 환경을 토대로 이미지 예측 실험을 통해 기존에 학습된 딥 러닝 아키텍처 환경에서의 정확도가 높은 예측 시스템을 제안한다. 실험을 통해 딥 러닝이 수행되기 위해 제공된 이미지 예에서 95.23%의 정확도를 보이며, 제안된 모델은 유사한 다른 모델에 비교해 96.54%의 정확도를 보인다. 제시된 아키텍처를 활용하여 활발한 엔터프라이즈급 환경의 딥 러닝 서비스가 개발 및 제공될 것으로 보이며, 기존 엔터프라이즈 환경이 딥 러닝 아키텍처가 탑재된 환경으로 전환이 활발히 이루어질 것이다.

This paper proposes an image prediction system architecture for deep running in enterprise environment. Easily transform into an artificial intelligence platform for an enterprise environment, and allow sufficient deep-running services to be developed and modified even in Java-centric architectures to improve the shortcomings of Java-centric enterprise development because artificial intelligence platforms are concentrated in the pipeline. In addition, based on the proposed environment, we propose a more accurate prediction system in the deep running architecture environment that has been previously learned through image forecasting experiments. Experiments show 95.23% accuracy in the image example provided for deep running to be performed, and the proposed model shows 96.54% accuracy compared to other similar models.

키워드

참고문헌

  1. M. H. Lee. (2013). EJB 3.1 Lightweight Container Architecture N-Tier Enterprise Architecture. The Society of Korea Industrial and Systems Engineering, 257-260.
  2. H. Jeong. (2018). A Study on Scheduling Optimization Model for Information System Development of Public Informatization Project based on Autonomous Government Standard Framework. Proceedings of KORMS International Conference, 2390-2398.
  3. S. J. Lee, S. A. Shin, D. S. Kang & S. H. Kim. (2018). Quantitative Analysis of Domestic E-Government Research Trends.
  4. S. Y. Lee & H. J. Yoon. (2019). A Study on the 4th Industrial Revolution and E-Government Security Strategy -In Terms of the Cyber Security Technology of Intelligent Government. Journal of the KIECS, 14, 369-376.
  5. Moscoso-Zea, O., Castro, J., Paredes-Gualtor, J. & Lujan-Mora, S. (2019). A Hybrid Infrastructure of Enterprise Architecture and Business Intelligence & Analytics for Knowledge Management in Education. IEEE Access, 7, 38778-38788. https://doi.org/10.1109/ACCESS.2019.2906343
  6. Garita, C. & Ortiz, G. (2018, November). Development of a Business Intelligence Prototype for Bridge Health Monitoring. In 2018 International Conference on Information Systems and Computer Science (INCISCOS) (pp. 337-342). IEEE. DOI : 10.14400/JDC.2016.14.12.1
  7. S. J. Choi, G. J. Ki & B. G. Kang. (2019). The Brainwave Analysis of Server System Based on Spring Framework. The Society of Digital Policy & Management, 17(2), 155-161.
  8. Taieb, D. (2018). Data Analysis with Python: A Modern Approach. Packt Publishing Ltd.
  9. Dahl, G. E., Sainath, T. N. & Hinton, G. E. (2013, May). Improving deep neural networks for LVCSR using rectified linear units and dropout. In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 8609-8613). IEEE.
  10. Ide, H. & Kurita, T. (2017, May). Improvement of learning for CNN with ReLU activation by sparse regularization. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 2684-2691). IEEE.
  11. Abadi, M. et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX } Symposium on Operating Systems Design and Implementation ( {OSDI } 16) (pp. 265-283).
  12. Bragilevsky, L. & Bajic, I. V. (2017, August). Deep learning for Amazon satellite image analysis. In 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM) (pp. 1-5). IEEE.
  13. He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
  14. Alom, M. Z., Hasan, M., Yakopcic, C. & Taha, T. M. (2017). Inception recurrent convolutional neural network for object recognition. arXiv preprint arXiv:1704.07709.
  15. Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Conference on Artificial Intelligence.
  16. CIFAR-10 Data set. https://www.tensorflow.org/tutorials/images/deep_cnn
  17. An Analysis of Deep Neural Network Models for Practical Applicaitions. 2017
  18. Tensorflow. https://www.tensorflow.org/