References
- G. D. Kim & Y. H. Kim. (2017). A Survey on Oil Spill and Weather Forecast Using Machine Learning Based on Neural Networks and Statistical Methods. Journal of the Korea Convergence Society, 8(10), 1-8. https://doi.org/10.15207/JKCS.2017.8.10.001
- J. Ku. (2017). A Study on the Machine Learning Model for Product Faulty Prediction in Internet of Things Environment. Journal of Convergence for Information Technology, 7(1), 5-60.
- Y. Jeong. (2018). Machine Learning Based Domain Classification for Korean Dialog System. Journal of Convergence for Information Technology, 9(8), 1-8. https://doi.org/10.22156/CS4SMB.2019.9.8.001
- Y. Namgoong, C. O. Kim & C. J. Lee. (2019). A machine learning model for the derivation of major molecular descriptor using candidate drug information of diabetes treatment. Journal of the Korea Convergence Society, 10(3), 23-30. https://doi.org/10.15207/JKCS.2019.10.3.023
- L. Deng, J. Li, J. Huang, K. Yao, D. Yu, F. Seide, M. L. Seltzer, G. Zweig, X. He, J. Williams, Y. Gong & A. Acero. (2013). Recent advances in deep learning for speech research at microsoft. ICASSP.
- A. Graves. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
- A. Graves, A. Mohamed & G. Hinton. (2013). Speech recognition with deep recurrent neural networks. In Acoustics, Speech and Signal Processing(ICASSP), 2013 International Conference, 6645-6649
- G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever & R. R. Salakhutdinov. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580
- T. Tieleman & G. E. Hinton. (2013). Lecture 6.5-RMSProp, COURSERA: Neural Networks for Machine Learning. Technical report.
- J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang & A. Y. Ng. (2012). Large scale distributed deep networks. in NIPS.
- N. Jaitly, P. Nguyen, A. Senior & V. Vanhoucke. (2012). Application of pretrained deep neural networks to large vocabulary speech recognition. in Interspeech.
- S. Amari. (1998). Natural gradient works efficiently in learning. Neural computation, 10(2), 251-276. https://doi.org/10.1162/089976698300017746
- J. Duchi, E. Hazan & Y. Singer. (2011). Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12, 2121-2159.
- G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen & T. N. Sainath. (2016). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, 29(6), 82-97.
- A. Krizhevsky, I. Sutskever & G. E. Hinton. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, 1097-1105.
- R. Pascanu & Y. Bengio. (2013). Revisiting natural gradient for deep networks. arXiv preprint arXiv:1301.3584.
- I. Sutskever, J. Martens, G. Dahl & G. E. Hinton. (2013). On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning(ICML-13), 1139-1147.
- E. Moulines & F. R. Bach. (2015). ADAM: A method for stochastic optimization. The 3rd International Conference for Learning Representations, San Diego.
- Y. Bengio, P. Simard & P. Frasconi. (1994). Learning long-term dependencies with gradient is difficult. IEEE Transaction on neural networks, 5(2), 157-166. https://doi.org/10.1109/72.279181