DOI QR코드

DOI QR Code

실시간 생태독성 평가를 위한 물벼룩 감시장치 적용성 검토

Application of Daphnia magna Monitoring System for Real-time Ecotoxicity Assessment

  • 이장훈 (호서대학교 건축토목환경공학부) ;
  • 고태웅 (호서대학교 벤처대학원 융합과학기술학과)
  • Lee, Jang-Hoon (Division of Architecture, Civil and Environnmental Engineeting, Hoseo University) ;
  • Ko, Woong-Tae (Engineer Department of Convergence Science Technology, Graduate School of Venture, Hoseo University)
  • 투고 : 2019.01.08
  • 심사 : 2019.10.20
  • 발행 : 2019.10.28

초록

본 연구에서는 물벼룩 감시장치를 이용하여 생태독성 기준 1 TU(Toxic Unit)에 해당하는 물벼룩 감시장치의 TI(Toxic Index)값을 설정하고 NOEC와 $EC_{50}$에서 물벼룩 감시장치를 운영하였을 때 적절히 경보가 발령되어 실시간 생태독성 평가가 가능한 지 타진하였다. 연구목적을 위해 국 내외 관련 자료를 조사하여 선행연구를 하였고 인공 하천수를 대상으로 먹는물 수질감시항목에서 권고하는 59개 유해물질 중 6개(As, Hg, Cr, Diazinon, Dioxane, Phenol) 물질을 채택하여 지수식과 유수식 그리고 정도관리 시험을 실시하였다. 시험결과 NOEC 유수식 시험에서 Diazinon을 제외한 다른 물질들은 TI가 양호단계로 나타났고 $EC_{50}$ Spiking test에서 1 TU 이상과 1 TU 이하를 구분하여 TI는 TU에 상응하게 경보를 발령했다. 본 연구결과는 생태독성관리제도의 보완점을 생각하고 효율적인 관리체계로의 전환을 요구하는 하나의 메시지가 된다.

In this study, TI(Toxic Index) of Daphnia toximeter corresponded to ecological toxicity standard 1 TU(Toxic Unit) was set up using Daphnia toximeter and when operating NOEC(water quality standards for drinking water) and $EC_{50}$ Daphnia toximeter alarm was issued appropriately, which enables real time ecological toxicity evaluation. I studied to get a good shot and the research was conducted by investigating domestic and international related data and conducting a preliminary study. 6 of 59 hazardous substances (As, Hg, Cr, Diazinon, Dioxane, and Phenol) recommended by the water quality monitoring items for artificial river water were selected and static, dynamic and quality management test, TI was shown to be good in other materials except Diazinon, and as a result of $EC_{50}$ spiking test, TI was matched to TU by distinguishing between 1 TU and 1 TU. in suggesting the complementary point of ecological toxicity management system and the future of research on water Daphnia toximeter.

키워드

참고문헌

  1. G. P. Cheon. (2018. 11. 29). Water Quality Operation is Life Waste... A survey of sewage treatment plants across the country. korea joongang daily, p. 8.
  2. S. G. Lee. (2002). A Study on the Introduction of Integrated Toxicity Management System for Water Quality Hazardous Substances. Daejeon : Korea Institute of Toxicology.
  3. J. Botterweg, C. Van de Guchte & L. W. C. A. Van Breemen. (1989). Bioalarm Systems: a Supplement to traditional monitoring of water quality. H20, 22, 778-794.
  4. K. Sanna. (1995). Is Daphnia magna an ecologic ally representative zooplankton species in toxici ty tests? Environ Pollut, 90(2), 263-267. DOI : 10.1016/0269-7491(95)00029-q
  5. B. G. Anderson. (1944). The toxicity thouresholds of various substances found in industrial wastes as determined by the use of Daphnia magna. Sewage Works Journal, 1156-1165.
  6. B. G. Anderson. (1950). The apparent Thresholds of toxicity to Daphnia magna for chlorides of various metals when added to Lake Erie water. Transactions of the American Fisheries Society, 78(1), 96-113. DOI : 10.1577/1548-8659(1948)78[96:tatott]2.0.co;2
  7. A. L. Buikema, D. R. Lee & J. Cairns. (1976). A screening bioassay using Daphnia pulex for refinery wastes discharged into freshwater. Journal of Testing and Evaluation, 4(2), 119-125. DOI : 10.1520/jte10185j
  8. K. E. Biesinger & G. M. Chouristensen. (1972). Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. Journal of the Fisheries Board of Canada, 29(12), 1691-1700. DOI : 10.1139/f72-269
  9. J. C. Yoon et al. (2004). Study on the Application of Daphnia Biomonitering System,
  10. S. H. Choe & J. T. Kim. (1996). Early-Warning Monitoring System for Water Resources management. Korean Society for Health Education and Promotion, 217-240
  11. S. I. Dodson, S. Ryan, R. Tollrian & W. Lampert. (1997). Individual swimming behavior of Daphnia: effects of food, light and container size in four clones. Journal of Plankton Research, 19(10 ), 1537-1552. DOI : 10.1093/plankt/19.10.1537
  12. C. Buchanan, B. Goldberg & R. McCartney. (19 82). A laboratory method for studying zooplankton swimming behaviors. Hydrobiologia, 94(1), 77-89. DOI : 10.1007/bf00008635
  13. S. Young & C. Getty. (1987). Visually guided fe eding behaviour in the filter feeding cladoceran, Daphaia magna. Animal behaviour, 35(2), 541-548. DOI : 10.1016/s0003-3472(87)80279-8
  14. S. I. Dodson, T. Hanazato & P. R. Gorski. (1995). Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone. Environmental Toxicology and Chemistry, 14(1), 43-50. DOI : 10.1897/1552-8618(1995)14[43:brodpe]2.0.
  15. M. C. Brewer & J. N. Coughlin. (1996). Virtual plankton: a novel approach to the investigation of aquatic predator-prey interactions. Zooplankt on: sensory ecology and physiology, 1, 425-434. DOI : 10.1080/10236249509378931
  16. H, D, Shin. (2010). A Study on The Factors in the Survival of Daphnia. Master thesis. Yeung nam University, Gyeongsan.
  17. B. J. Lim, S. Y. Park, M. S. Byeon, C. W. Lee, E. S. Lim, H. I. Rhu, S. H. Choi & S. M. Yun. (1995). Studies on th Early Warning Systems with Waterflea, Incheon : Nakdong River Water Resource Inspection Center National Institute of Environmental Reserch.
  18. H. J. Lee et al. (2003). Ecotoxicological Studies on the Effect of Heavy Metals Using Daphnia Toximeter. Korean Society on Water Quality. Korean Society on Water Quality, 11, 209-212.
  19. J. S. Han. (2016). A Study on the Effective Operation of Biological Monitoring System. Seoul : Waterworks research institute of seoul metropolitan.
  20. Y. T. Rim et al. (2001). Behavior Estimation of Water flea on Toxicants. Report of NIER, 23, 639-649.
  21. S. H. Kim. (2009). Water pollution process test standard(ecological toxicity). Industrial water quality ecological toxicity management conference. (p. 8). Jecheon : Minstry of Environment.
  22. National Institute of Environmental Research. (2015). Ecology Toxicity Testing Method and Operation Guidelines. Incheon : National Institute of Environmental Research.
  23. J. W. Jeong, M. S. Cha, S. J. Jo & S. J. Lee. (2001). Acute and chouronic toxicity of heavy metals to Daphnia magna. Journal of Environmental Science International, 10(4), 293-298.
  24. B. S. Khangarot & P. K. Ray. (1987). Correlation between heavy metal acute toxicity values in Daphnia magna and fish. Bulletin of environmental contamination and toxicology, 38(4), 722-726. DOI : 10.1007/bf01608609
  25. L. Guilhermino, T. C. Diamantino, R. Ribeiro, F. Goncalves & A. M. Soares. (1997). Suitability of Test Media Containing EDTA for the Evaluation of Acute Metal Toxicity to Daphnia magna Straus. Ecotoxicology and environmental safety, 38(3), 292-295. DOI : 10.1006/eesa.1997.1599
  26. D. I. Mount & U. T. Norberg. (1984). A seven day life cycle cladoceran toxicity test. Environmental Toxicology and Chemistry: An International Journal, 3(3), 425-434. DOI : 10.1897/1552-8618(1984)3[425:aslcct]2.0.co;2
  27. M. Corbin. (2009). Problem formulation for the environmental fate and ecological risk, endangered species and drinking water assessments in support of the registered review of chlorpyrifos. Office of Prevention, Pesticides, and Toxic Substances, US EPA.
  28. Fisher Scientific. (2009). Material Safety Data Sheet. Fair Lawn : Fisher Scientific. https://www.thermofisher.com
  29. Y. R. Lee, O. H. Kim, C. H. Kim. (2017). Consideration of Evo-Devo in the Morphogenes is of Fractal Structures in Ammonites. Journal of the Korea Convergence Society, 8(8), 185-190. https://doi.org/10.15207/JKCS.2017.8.3.185
  30. J. K. Lee, Y. K. Lee, Y. S. Yuk, G. Y. Kim. (2017). Convergence Study of Antimicrobial Resistance of Escherichia coli Isolated from Cheonho Reservoir in Cheonan. Journal of the Korea Convergence Society, 8(11), 141-149. https://doi.org/10.15207/JKCS.2017.8.3.141
  31. B. Y. Choi, S. C. Cho. (2017). Screening of Natural Compounds for Cancer Prevention by Cytotoxicities and AP-1 Reporter Gene Activities. Journal of Convergence for Information Technology, 7(6), 89-95. https://doi.org/10.22156/CS4SMB.2017.7.6.089
  32. T. S. Ki. S. H. Lee. (2017). A Prediction Scheme for Power Apparatus using Artificial Neural Networks. Journal of Convergence for Information Technology, 7(6), 201-207. https://doi.org/10.22156/CS4SMB.2017.7.6.201