References
- Abdollahzadeh, G., Jahani, E. and Kashir, Z. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Concrete, 18(2), 155-163. http://dx.doi.org/10.12989/cac.2016.18.2.155.
- ACAA (American Coal Ash Association: 74) (2003), Fly Ash Facts for Highway Engineers, Aurora, USA.
- Alkroosh, I. and Ammash, H. (2015), "Soft computing for modelling punching shear of reinforced concrete flat slabs", Ain Shams Eng. J., 6(2), 439-448. https://doi.org/10.1016/j.asej.2014.12.001.
- Andric, I., Jamali-Zghal, N., Santarelli. M. and Le Corre, O. (2015), "Environmental performance assessment of retrofitting existing coal fired power plants to co-firing with biomass: carbon footprint and energy approach", J. Clean. Prod., 103, 13-27. https://doi.org/10.1016/j.jclepro.2014.08.019.
- AS (Australian Standard) (1999), Methods of Testing Concrete- Method 9: Determination of the Compressive Strength of Concrete Specimens.
- Barbosa, V.F., MacKenzie, K.J. and Thaumaturgo, C. (1999), "Synthesis and characterisation of sodium polysialate inorganic polymer based on alumina and silica", Proc. 99 Int. Geopolymer Conf. Saint-Quentin, France.
- Barbosa, V.F., MacKenzie, K.J. and Thaumaturgo, C. (2000), "Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers", Int. J. Inorganic Mater., 2(4), 309-317. https://doi.org/10.1016/S1466-6049(00)00041-6.
- Behnood, A., Olek, J. and Glinicki, M. (2015), "Predicting modulus elasticity of recycled aggregate concrete using M5' model tree algorithm", Constr. Build. Mater., 94, 137-147. https://doi.org/10.1016/j.conbuildmat.2015.06.055.
- Castelli, M., Trujillo, L., Goncalves, I. and Popovic, A. (2017), "An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming", Comput. Concrete, 19(6), 651-658. https://doi.org/10.12989/cac.2017.19.6.657.
- Chen, L. (2003), "Study of applying macroevolutionary genetic programming to concrete strength estimation", J. Comput. Civil Eng., 17(4), 290-294. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(290).
- Davidovits, J. (1999), "Chemistry of geopolymeric systems terminology", Proc. 99 International Geopolymer Conf. Saint- Quentin, France.
- Deshpande, N., Londhe, S. and Kulkarni, S. (2014), "Modeling compressive strength of recycled aggregate concrete by artificial neural network, model tree and nonlinear regression", Int. J. Sustain. Build. Environ., 3, 187-198. https://doi.org/10.1016/j.ijsbe.2014.12.002.
- Dreyfus, G. (2005), Neural Networks Methodology and Applications, Berlin Heidelberg, Springer-Verlag, Germany.
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013a), "Prediction of compressive strength of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063.
- Duan, Z.H., Kou, S.C. and Poon, C.S. (2013b), "Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete", Constr. Build. Mater., 44, 524-532. https://doi.org/10.1016/j.conbuildmat.2013.02.064.
- Gandomi, A.H., Alavi, A.H. and Arjmandi, P. (2010), "Genetic programming and orthogonal leas t squares: a hybrid approach to modelling the compressive strength of CFRP-confined concrete cylinders", J. Mech. Mater. Struct., 5(5), 735-753. https://doi.org/10.2140/jomms.2010.5.735.
- Gazder, U., Al-Amoudi, O., Saad Khan, S. and Maslehuddin, M. (2017), "Predicting compressive strength of blended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/10.12989/cac.2017.20.6.627.
- Gonzalez-Taboada, I., Gonzalez-Fonteboa, B., Martinez-Abella, F. and PerezOrdonez, J. (2016), "Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming", Constr. Build. Mater., 106, 480-499. https://doi.org/10.1016/j.conbuildmat.2015.12.136.
- Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", Research Report GC1, Faculty of Engineering, Curtin University of Technology, Perth, Australia.
- Heidrich, C. (2002), "Ash utilisation - An australian perspective", Proc. Int. Conf. on Geopolymers, Melbourne, Australia.
- Kiani, B., Gandomi, A., Sajedi, S. and Liang R. (2016), "New formulation of compressive strength of preformed-foam cellular concrete: an evolutionary approach", J. Mater. Civil Eng., 28(10), 04016092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001602.
- Lachtermacher, G. and Fuller, J. (1994), "Back-propagation in hydrological times series forcasting", Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Eds. Hipel K.W., Panu U. S., Singh V.P., 229, Kluer Academic Publisher Group, The Netherlands.
- Master, T. (1993), Practical Neural Network Recipes in C++, Academic Press, San Diego, California.
- Mousavi, S.M., Aminian, P. and Gandomi, A.H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.
- Mukherjee, A. and Deshpande, J. (1995), "Modelling initial design process using artificial neural networks", J. Comput. Civil Eng., 9(3), 194-200. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:3(194).
- Nazari, A. and Riahi, S. (2011), "Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming", Compos. Part B: Eng., 42(3), 473-488. https://doi.org/10.1016/j.compositesb.2010.12.004.
- Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modelling of fresh and hardened properties of self-compacting concretes by genetic programming", Constr. Build. Mater., 22(8), 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021.
- Palomo, A., Grutzeck, M. and Blanco, M. (1999), "Alkaliactivated fly ashes, a cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9.
- Reitermanova, Z. (2010), "Data splitting", WDS'10 Proceedings of Contributed Papers, Part I, 31-36.
- Rodgers, J.L. and Nicewander, W.A. (1988), "Thirteen ways to look at correlation coefficient", Am. Statist., 42(1), 59-66. https://doi.org/10.1080/00031305.1988.10475524.
- Roy, D.M. (1999), "Alkali-activated cements, opportunities and challenges", Cement Concrete Res., 29(2), 249-254. https://doi.org/10.1016/S0008-8846(98)00093-3.
- Rubenstein, M. (2012), "Policy shifts toward an energy system transition: The dynamics of advocacy coalitions and New York State's renewable portfolio standard", MS Thesis, New York.
- Saridemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489.
- Shahin, M., Maier, H. and Jaksa, M. (2004), "Data division for developing neural networks applied to geotechnical engineering", J. Comput. Civil Eng., 18(2), 105-114. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(105).
- Sonebi, M. and Cevik, A. (2009), "Genetic programming based formulation for fresh and hardened properties of selfcompacting concrete containing pulverised fuel ash", Constr. Build. Mater., 23(7), 2614-2622. https://doi.org/10.1016/j.conbuildmat.2009.02.012
- Standards Australia (2000), Methods of Testing Concrete. Method 10 Determination of Indirect Tensile Strength of Concrete Cylinders ('Brazil' or splitting test): 8.
- Standards Australia (2014), Methods of Testing Concrete- Compressive Strength Tests-Concrete, Mortar and Grout Specimens (AS 1012.9-2014).
- Swanepoel, J.C. and Strydom, C.A. (2002), "Utilisation of fly ash in a geopolymeric material", Appl. Geochem., 17(8), 1143-1148. https://doi.org/10.1016/S0883-2927(02)00005-7.
- van Jaarsveld, J.G., van Deventer, J.S. and Lukey, G.C. (2002), "The effect of composition and temperature on the properties of fly ash and Kaolinitebased geopolymers", Chem. Eng. J., 89(1-3), 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6.
- van Jaarsveld, J.G., van Deventer, J.S. and Lukey, G.C. (2003), "The characterisation of source naterials in fly ash-based geopolymers", Mater. Lett., 57(7), 1272-1280. https://doi.org/10.1016/S0167-577X(02)00971-0.
- Xu, H. and van Deventer, J.S. (2000), "The geopolymerisation of Alumino-Silicate ninerals", Int. J. Min. Pr., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5.
- Xu, H. and van Deventer, J.S. (2002), "Geopolymerisation of multiple minerals", Min. Eng., 15(12), 1131-1139. https://doi.org/10.1016/S0892-6875(02)00255-8.
- Yeh, C. (2006), "Exploring concrete slump model using artificial neural networks", J. Comput. Civil Eng., 20(3), 217-221. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(217).
- Younis, K.H. and Pilakoutas, K. (2013), "Strength prediction model and methods for improving recycled aggregate concrete", Constr. Build. Mater., 49(2013), 688- 701. https://doi.org/10.1016/j.conbuildmat.2013.09.003.
Cited by
- Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest vol.2021, 2019, https://doi.org/10.1155/2021/6618407
- Geopolymer Concrete Compressive Strength via Artificial Neural Network, Adaptive Neuro Fuzzy Interface System, and Gene Expression Programming With K-Fold Cross Validation vol.8, 2019, https://doi.org/10.3389/fmats.2021.621163
- Application of Gene Expression Programming (GEP) for the Prediction of Compressive Strength of Geopolymer Concrete vol.14, pp.5, 2021, https://doi.org/10.3390/ma14051106
- Discharge coefficient estimation for rectangular side weir using GEP and GMDH methods vol.6, pp.2, 2019, https://doi.org/10.12989/acd.2021.6.2.135