DOI QR코드

DOI QR Code

A Study on the Synchronization Methodology for Grid-connection of Three Phase Inverter

3상 인버터의 계통 연계를 위한 동기화 방법론에 대한 연구

  • 임병석 (남서울대학교 전자공학과) ;
  • 이준성 (남서울대학교 전자공학과) ;
  • 웬황난 (남서울대학교 전자공학과) ;
  • 잔반탄 (남서울대학교 전자공학과) ;
  • 고윤석 (남서울대학교 전자공학과)
  • Received : 2019.09.16
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

For the power grid-connection of distributed generation, the output voltage of the distributed generation must be synchronized with the grid voltage before the grid-connection. In this paper, a vector control based synchronization algorithm was developed for grid linkage of three-phase inverters. A three-phase voltage inverter was designed and fabricated to verify the effectiveness of the developed algorithm. The main controller of the three-phase inverter was developed based on DSP, and the electrical level of the system was set to an electrical level that can be tested in the laboratory. Throughout the experiments, it was confirmed that the proposed algorithm could be used as a synchronization algorithm for grid-connection by showing that the output voltage of the three-phase inverter is synchronized with the grid voltage.

분산 전원의 계통 연계를 위해서는 연계 전에 분산 전원 출력전압을 계통전압과 동기화시켜야 하는데, 전압의 크기, 위상 그리고 주파수를 일치시키는 문제이기 때문에 쉽지 않다. 본 연구에서는 3상 인버터의 계통 연계를 위한 벡터제어 기반의 동기화 알고리즘을 개발하였다. 하나의 3상 전압형 인버터를 설계, 제작하여 개발된 알고리즘의 유효성을 검증하였다. 3상 인버터의 주제어장치는 DSP 기반으로 개발되었고, 계통의 전기적인 레벨은 실험실에서 실험이 가능한 전기적 레벨로 하였다. 그리고 실험을 통하여 3상 인버터의 출력전압이 계통전압을 추종하여 동기화를 이루는 것을 보임으로서 제시된 알고리즘이 계통 연계를 위한 동기화 알고리즘으로 활용될 수 있음을 확인될 수 있었다.

Keywords

References

  1. M. Prodanovic and T. C. Green, "Control and Filter Design of Three-phase Inverters for High Power Quality Grid Connection," IEEE Trans. on Power Electronics, vol. 18, no. 1, Jan. 2003, pp. 373-380. https://doi.org/10.1109/TPEL.2002.807166
  2. Y. Ko, "A Study on the Effective Downscaling Methodology for Design of a Micro Smart Grid Simulator", J. of Electrical Engineering and Technology, vol. 13, no. 4, July 2018, pp. 1425-1437. https://doi.org/10.5370/JEET.2018.13.4.1425
  3. J. Svensson, "Synchronisation Methods for Grid-connected Voltage Source Converters," IEE Proc. -Gener. Transm. Distrib., vol. 148, no. 3, May 2001, pp. 229-235. https://doi.org/10.1049/ip-gtd:20010101
  4. N. Kroutikov, C.A. Hernandez-Aramburo, and T.C. Green "State-space Model of Grid-connected Inverters under Current Control Mode," IET Electric Power Applications, vol. 1, no. 3, May 2007, pp. 329-338. https://doi.org/10.1049/iet-epa:20060276
  5. M. M. Baba, G. Mothilal, and T. K. Kumar, "Grid Voltage Synchronization for Distributed Generation Systems under Grid Fault Conditions Using Fuzzy Logic Controller," Int. J. of Professional Engineering Studies, vol. 7, no. 2, Sept. 2016, pp. 50-59.
  6. M. R. Amin and S. A. Zulkifli, "Fast Self-Synchronization between Low-Voltage Microgrid and Inverter using Virtual Synchronous Converter," J. of Electrical Systems, vol. 13, no. 4, 2017, pp. 646-660.
  7. Y. Ko, "A Study on the Voltage Control of a Single Phase Full-bridge Inverter using SPWM Driving Method", J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 1, Oct, 2017, pp. 851-858.
  8. Y. Y. Chai, "Development of 500W Inverter with Pure Sine Wave Output", J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 1, Feb, 2018, pp. 61-68. https://doi.org/10.13067/JKIECS.2018.13.1.61
  9. Y. Ko, H. Kim, Y. Lee, H. Jung, and H. Yoo, "A Study on the SPWM based Power Conversion Technology of the Three-Phase Photovoltaic Inverter Using DSP", J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 6, Dec, 2017, pp. 1099-1106. https://doi.org/10.13067/JKIECS.2017.12.6.1099
  10. S. Son, I. Choy, and Y. Park, "Four-switch Three-phase Inverter Control Method Applied by Simplified Space Vector PWM", J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 3, Mar, 2016, pp. 283-292. https://doi.org/10.13067/JKIECS.2016.11.3.283
  11. M. Liserre, F. Blaabjerg, and S. Hansen, "Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier," IEEE Trans. on Industrial Applications, vol. 41, no. 5, pp. Sept./Oct. 2005, pp. 1281-1291. https://doi.org/10.1109/TIA.2005.853373
  12. K. H. Ahmed, S. J. Finney, and B. W. Wiliams, "Passive Filter Design for Three-phase Inverter Interfacing in Distributed Generation," J. of Electrical Power Quality and Utilisation, vol. 8, no. 2, May 2007, pp. 49-58.
  13. A. Reznik, M. G. Simoes, A. Al-Durra, and S. M. Muyeen, "LCL Filter Design and Performance Analysis for Grid-interconnected Systems," IEEE Trans. on Industrial Applications, vol. 50, no. 2, pp. Mar./Apr. 2014, pp. 1225-1232. https://doi.org/10.1109/TIA.2013.2274612
  14. J. Jang and K. Kim, "Design of LCL Filter through Inductor Optimization Method in Grid-Connected Inverter," The Korean Institute of Illuminating and electrical Installation Engineers, vol. 28. no. 11, 2014, pp. 58-67. https://doi.org/10.5207/JIEIE.2014.28.11.058
  15. J. Park, M. Chi, H. Kim, T. Chun, and E. Nho, "LCL Filter Design for Grid-connected PCS Using Total Harmonic Distortion and Ripple Attenuation Factor," The Korean Institute of Power Electronics, vol. 15, no. 3, 2010, pp. 235-243. https://doi.org/10.6113/TKPE.2010.15.3.235
  16. S. Jung and S. Choi, "Optimized LCL filter Design Method of Utility Interactive Inverter," The Transactions of the Korean Institute of Power Electronics, vol. 18, no. 1, 2013, pp. 103-109. https://doi.org/10.6113/TKPE.2013.18.1.103
  17. D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice. Hoboken: John Wiley & Sons. 2003.
  18. D. W. Hart, Power Electronics. New York: McGraw-Hill, 2010.
  19. Andrzej M. Trzynadlowski, Introduction to Modern Power Electronics. Hoboken: John Wiley & Sons, 2010.