References
- Engelhardt WV. Absorption of short-chain fatty acids from the large intestine. In: Cummings JH, Rombeau JL, Sakata T, editors. Physiological and clinical aspects of short-chain fatty acids. Cambridge, UK: Cambridge University Press; 1995. p. 149-70.
- Arora T, Sharma R. Fermentation potential of the gut microbiome: implications for energy homeostasis and weight management. Nutr Rev 2011;69:99-106. https://doi.org/10.1111/j.1753-4887.2010.00365.x
- Rose CJ, Hume ID, Farrell DJ. Fibre digestion and volatile fatty acid production in domestic and feral pigs. In: Farrell DJ, editor. Recent advances in animal nutrition in Australia. Armidale, Australia: University of New England Press; 1987. p. 347-60.
- De Graeve KG, Grivet JP, Durand M, et al. Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora. J Appl Bacteriol 1994;76:55-61. https://doi.org/10.1111/j.1365-2672.1994.tb04415.x
-
Lajoie SF, Bank S, Miller TL, Wolin MJ. Acetate production from hydrogen and (
$^{13}C$ )carbon dioxide by the microflora of human feces. Appl Environ Microbiol 1988;54:2723-7. https://doi.org/10.1128/AEM.54.11.2723-2727.1988 - Morvan B, Bonnemoy F, Fonty G, Gouet P. Quantitative determination of H2-utilizing acetogenic bacteria and sulfatereducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr Microbiol 1996;32:129-33. https://doi.org/10.1007/s002849900023
- Ohashi Y, Igarashi T, Kumazawa F, Fujisawa T. Analysis of acetogenetic bacteria in human feces with formyltetrahydrofolate synthetase sequences. Biosci Microflora 2007;26:37-40. https://doi.org/10.12938/bifidus.26.37
- De Graeve K, Demeyer DI. Rumen and hindgut fermentation: differences for possible exploitation? Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent; Belgium. 1988;53:1805-9.
-
Prins RA, Lankhorst A. Synthesis of acetate from
$CO_{2}$ in the cecum of some rodents. FEMS Microbiol Lett 1977;1:255-8. https://doi.org/10.1111/j.1574-6968.1977.tb00627.x - Matsui H, Ishimoto-Tsuchiya T, Maekawa S, Ban-Tokuda T. Diversity and population density of methanogens in the large intestine of pigs fed diets of different energy levels. Anim Sci J 2018:89:1468-74. https://doi.org/10.1111/asj.13083
- Drake HL, Kusel K, Matthies C. Ecological consequences of the phylogenetic and physiological diversities of acetogen. Antonie Van Leeuwenhoek 2002;81:203-13. https://doi.org/10.1023/A:1020514617738
-
Lovell CR, Leaphart AB. Community-level analysis: key genes of
$CO_{2}$ -reductive acetogenesis. Methods Enzymol 2005;397:454-69. https://doi.org/10.1016/S0076-6879(05)97028-6 - Gagen EJ, Denman SE, Padmanabha J, et al. Functional gene analysis suggests different acetogen populations in the bovine rumen and Tammar wallaby forestomach. Appl Environ Microbiol 2010;76:7785-95. https://doi.org/10.1128/AEM.01679-10
- Matsui H, Kojima N, Tajima K. Diversity of the formyltetrahydrofolate synthetase gene (fhs), a key enzyme for reductive acetogenesis, in the bovine rumen. Biosci Biotechnol Biochem 2008;72:3273-6. https://doi.org/10.1271/bbb.70375
- Matsui H, Yoneda S, Ban-Tokuda T, Wakita M. Diversity of the formyltetrahydrofolate synthetase (FTHFS) gene in the proximal and mid ostrich colon. Curr Microbiol 2011;62:1-6. https://doi.org/10.1007/s00284-010-9661-y
- National Agriculture and Bio-oriented Research Organization. Japanese feeding standard for swine. Tokyo, Japan: Japan Livestock Industry Association; 2005.
- Hattori K, Matsui H. Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 2008;14:87-93. https://doi.org/10.1016/j.anaerobe.2007.12.002
- Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402. https://doi.org/10.1093/nar/25.17.3389
- Schloss PD, Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 2005;71: 1501-6. https://doi.org/10.1128/AEM.71.3.1501-1506.2005
- Juottonen H, Galand PE, Yrjala K. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 2006;157:914-21. https://doi.org/10.1016/j.resmic.2006.08.006
- Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-8. https://doi.org/10.1093/bioinformatics/btm404
- Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25. https://doi.org/10.1093/oxfordjournals.molbev.a040454
- Singleton DR, Furlong MA, Rathbun SL, Whitman WB. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 2001;67:4374-6. https://doi.org/10.1128/AEM.67.9.4374-4376.2001
- Henderson G, Naylor GE, Leahy SC, Janssen PH. Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 2010;76:2058-66. https://doi.org/10.1128/AEM.02580-09
- Leaphart AB, Lovell CR. Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 2001;67:1392-5. https://doi.org/10.1128/AEM.67.3.1392-1395.2001
- Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 2008;47:367-73. https://doi.org/10.1111/j.1472-765X.2008.02408.x