DOI QR코드

DOI QR Code

Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

  • Lee, Shin Ja (Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University) ;
  • Jeong, Jin Suk (Division of Applied Life Science (BK21Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Shin, Nyeon Hak (Livestock Experiment Station, Gyeongsangnamdo Livestock Promotion Research Institute) ;
  • Lee, Su Kyoung (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Hyun Sang (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Eom, Jun Sik (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Lee, Sung Sill (Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University)
  • Received : 2019.02.01
  • Accepted : 2019.05.16
  • Published : 2019.12.01

Abstract

Objective: This study was conducted to evaluate the effects of Ecklonia stolonifera (E. stolonifera) extract addition on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Methods: One cannulated Holstein cow ($450{\pm}30kg$) consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (09:00 and 17:00) at 2% of body weight with free access to water and mineral block were used as rumen fluid donors. In vitro fermentation experiment, with timothy hay as substrate, was conducted for up to 72 h, with E. stolonifera extract added to achieve final concentration 1%, 3%, and 5% on timothy hay basis. Results: Administration of E. stolonifera extract to a ruminant fluid-artificial saliva mixture in vitro increased the total gas production. Unexpectedly, E. stolonifera extracts appeared to increase both methane emissions and hydrogen production, which is contrasts with previous observations with brown algae extracts used under in vitro fermentation conditions. Interestingly, real-time polymerase chain reaction indicated that as compared with the untreated control the ciliate-associated methanogen and Fibrobacter succinogenes populations decreased, whereas the Ruminococcus flavefaciens population increased as a result of E. stolonifera extract supplementation. Conclusion: E. stolonifera showed no detrimental effect on rumen fermentation characteristics and microbial population. Through these results E. stolonifera has potential as a viable feed supplement to ruminants.

Keywords

References

  1. Jung HA, Jung HJ, Jeong HY, Kwon HJ, Ali MY, Choi JS. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP${\alpha}$ and PPAR${\gamma}$. Fitoterapia 2014;92:260-9. https://doi.org/10.1016/j.fitote.2013.12.003
  2. Chowdhury S, Huque K, Khatun M. Algae in animal production. Agracultural Science of Biodiversity and Sustainability Workshop, Tune Landboskole, Denmark; 1995. pp. 181-91.
  3. Wang Y, Xu Z, Bach SJ, McAllister TA. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim Feed Sci Technol 2008;145:375-95. https://doi.org/10.1016/j.anifeedsci.2007.03.013
  4. Haugan JA, Liaaenjensen S. Algal Carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem Syst Ecol 1994;22:31-41. https://doi.org/10.1016/0305-1978(94)90112-0
  5. Kuda T, Kunii T, Goto H, Suzuki T, Yano T. Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem 2007;103:900-5. https://doi.org/10.1016/j.foodchem.2006.09.042
  6. Kim S, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2010;2:1-9. https://doi.org/10.1016/j.jff.2010.01.003
  7. Winter FC, Estes JA. Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abalone Haliotus rufescens Swainson. J Exp Mar Biol Ecol 1992;155:263-77. https://doi.org/10.1016/0022-0981(92)90067-K
  8. Lee SJ, Shin NH, Jeong JS, Kim ET, Lee SK, Lee SS. Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Asian-Australas J Anim Sci 2018;31:54-62. https://doi.org/10.5713/ajas.17.0620
  9. Lee SJ, Shin NH, Jeong JS, et al. Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations. Asian-Australas J Anim Sci 2018;31:71-9. https://doi.org/10.5713/ajas.17.0619
  10. Pellikaan WF, Hendriks WH, Uwimana G, Bongers LJGM, Becker PM, Cone JW. A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment. Anim Feed Sci Technol 2011;168:196-205. https://doi.org/10.1016/j.anifeedsci.2011.04.096
  11. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  12. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 1959;31:426-8. https://doi.org/10.1021/ac60147a030
  13. Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 2006;58:572-82. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  14. Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 2002;148:3521-30. https://doi.org/10.1099/00221287-148-11-3521
  15. Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 2001;200:67-72. https://doi.org/10.1111/j.1574-6968.2001.tb10694.x
  16. Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 2001;204:361-6. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  17. Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 2007;62:313-22. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  18. SAS Institute Inc. SAS/STAT user's guide: Version 9.2 edn. Cary, NC, USA: SAS Institute Inc.; 2002.
  19. Denis C, Morancais M, Li M, et al. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 2010;119:913-7. https://doi.org/10.1016/j.foodchem.2009.07.047
  20. Dubois B, Tomkins NW, Kinley RD, et al. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 2013;4:34-43. https://doi.org/10.4236/ajps.2013.412A2005
  21. Hoover WH. Chemical factors involved in ruminal fiber digestion. J Dairy Sci 1986;69:2755-66. https://doi.org/10.3168/jds.S0022-0302(86)80724-X
  22. Min BR, Barry TN, Attwood GT, Mc-Nabb WC. The Effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 2003;106:3-19. https://doi.org/10.1016/S0377-8401(03)00041-5
  23. Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One 2014;9:e85289. https://doi.org/10.1371/journal.pone.0085289
  24. Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol 2011;22:315-26. https://doi.org/10.1016/j.tifs.2011.03.011
  25. Mitsumori M, Sun W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australas J Anim Sci 2008;21:144-54. https://doi.org/10.5713/ajas.2008.r01
  26. Finlay BJ, Esteban G, Clarke KJ, et al. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 1994;117:157-61. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  27. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008;6:579-91. https://doi.org/10.1038/nrmicro1931
  28. Chaucheyras-Durand F, Masseglia S, Fonty G, Forano E. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs. Appl Environ Microbiol 2010;76:7931-7. https://doi.org/10.1128/AEM.01784-10
  29. Ntaikou I, Gavala HN, Kornaros M, Lyberatos G. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrogen Energy 2008;33:1153-63. https://doi.org/10.1016/j.ijhydene.2007.10.053
  30. Latham MJ, Wolin MJ. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 1977;34:297-301. https://doi.org/10.1128/AEM.34.3.297-301.1977
  31. Hungate RE. The rumen and it's microbes. NY, USA: Academic Press; 1966. pp. 92-446.
  32. Mehrez AZ, Orskov ER, Mcdonald I. Rates of rumen fermentation in relation to ammonia concentration. Br J Nutr 1977;38:437-43. https://doi.org/10.1079/BJN19770108

Cited by

  1. New challenges for efficient usage of Sargassum fusiforme for ruminant production vol.10, pp.1, 2019, https://doi.org/10.1038/s41598-020-76700-3
  2. Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities vol.10, pp.12, 2020, https://doi.org/10.3390/ani10122432