DOI QR코드

DOI QR Code

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique

  • Ghannadpour, S.A.M. (New Technologies and Engineering Department, Shahid Beheshti University) ;
  • Moradi, F. (New Technologies and Engineering Department, Shahid Beheshti University)
  • 투고 : 2019.01.22
  • 심사 : 2019.08.04
  • 발행 : 2019.09.25

초록

The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary conditions are considered for graphene sheets. In addition, nonlocal elasticity theory is employed to achieve the post-buckling behavior related to the nano-sheets. In the present study, first, out-of-plane deflection function is considered as the only displacement field in the proposed technique, which is hypothesized by an appropriate deflected form. Then, the exact nonlocal stress function is calculated through a complete solution of the von-Karman compatibility equation. In the next step, Galerkin's method is used to solve the unknown parameters considered in the proposed technique. In addition, three different scenarios, which are significantly different with respect to concept, are used to satisfy the natural in-plane boundary conditions and completely attain the stress function. Finally, the post-buckling behavior of thin graphene sheets are evaluated for all three different scenarios, and the impacts of boundary conditions, polymer substrate, and nonlocal parameter are examined in each scenario.

키워드

참고문헌

  1. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
  2. Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Model, 38, 5934-5955. https://doi.org/10.1016/j.apm.2014.03.036
  3. Ansari, R. and Gholami, R. (2016), "Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory", Int. J. Appl. Mech., 8, 1650053. https://doi.org/10.1142/S1758825116500538
  4. Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092
  5. Ball, P. (2001), "Roll up for the revolution", Nature, 414, 142-144. https://doi.org/10.1038/35102721
  6. Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., Int. J., 5(2), 113-126. https://doi.org/10.12989/anr.2017.5.2.113
  7. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Advances Nano Res., Int. J., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279
  8. Brischetto, S., Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2015), "Refined 2D and exact 3D shell models for the free vibration analysis of single-and double-walled carbon nanotubes", Technologies, 3(4), 259-284. https://doi.org/10.3390/technologies3040259
  9. Chakraverty, S. and Behera, L. (2014), "Free vibration of rectangular nanoplates using Rayleigh-Ritz method", Phys. E Low-Dimens. Syst. Nanostruct., 56, 357-363. https://doi.org/10.1016/j.physe.2013.08.014
  10. Duan, W.H., Wang, Q., Wang, Q. and Liew, K.M. (2010), "Modeling the instability of carbon nanotubes: from continuum mechanics to molecular dynamics", J. Nanotechnol. Eng. Med., 1, 11001. https://doi.org/10.1115/1.3212820
  11. Ebrahimi, F. and Barati, M.R. (2016), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249. https://doi.org/10.12989/anr.2016.4.3.229
  12. Ebrahimi, F. and Barati, M.R. (2018), 'Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093
  13. Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111. https://doi.org/10.12989/anr.2016.4.2.085
  14. Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solids-I", Int. J. Eng. Sci., 2, 189-203. https://doi.org/10.1016/0020-7225(64)90004-7
  15. Eringen, A. and Wegner, J. (2003), Nonlocal Continuum Field Theories, Applied Mechanics Reviews, Springer, New York, NY, USA.
  16. Falvo, M.R., Clary, G., Helser, A., Paulson, S., Taylor, R.M., Chi, V., Brooks, F.P., Washburn, S. and Superfine, R. (1998), "Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes", Microsc. Microanal, 4, 504-512. https://doi.org/10.1017/S1431927698980485
  17. Farajpour, A., Solghar, A.A. and Shahidi, A. (2013), "Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression", Phys. E Low-Dimens. Syst. Nanostruct., 47, 197-206. https://doi.org/10.1016/j.physe.2012.10.028
  18. Ghannadpour, S.A.M. (2018), "Ritz method application to bending, buckling and vibration analyses of Timoshenko beams via nonlocal elasticity", J. Appl. Comput. Mech., 4, 16-26. https://doi.org/10.22055/JACM.2017.21915.1120
  19. Ghannadpour, S.A.M. and Mohammadi, B. (2010), "Buckling Analysis of Micro- and Nano-Rods/Tubes Based on Nonlocal Timoshenko Beam Theory Using Chebyshev Polynomials", Adv. Mater. Res., 123, 619-622. https://doi.org/10.4028/www.scientific.net/AMR.123-125.619
  20. Ghannadpour, S.A.M. and Mohammadi, B. (2011), "Vibration of nonlocal Euler beams using Chebyshev polynomials", Key Eng. Mater., 471, 1016-1021. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1016
  21. Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
  22. Golmakani, M.E. and Sadraee Far, M.N. (2016), "Nonlinear thermo-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory", Comput. Math. Appl., 72, 785-805. https://doi.org/10.1016/j.camwa.2016.06.022
  23. Jensen, K., Kim, K. and Zettl, A. (2008), "An atomic-resolution nanomechanical mass sensor", Nat. Nanotechnol., 3(9), 533. https://doi.org/10.1038/nnano.2008.200
  24. Jomehzadeh, E. and Saidi, A.R. (2011a), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020. https://doi.org/10.1016/j.compstruct.2010.06.017
  25. Jomehzadeh, E. and Saidi, A.R. (2011b), "A study on large amplitude vibration of multilayered graphene sheets", Comput. Mater. Sci., 50, 1043-1051. https://doi.org/10.1016/j.commatsci.2010.10.045
  26. Jomehzadeh, E., Saidi, A.R. and Pugno, N.M. (2012), "Large amplitude vibration of a bilayer graphene embedded in a nonlinear polymer matrix", Phys. E Low-Dimensional Syst. Nanostruct., 44, 1973-1982. https://doi.org/10.1016/j.physe.2012.05.015
  27. Lee, G. Do, Wang, C.Z., Yoon, E., Hwang, N.M. and Ho, K.M. (2006), "Vacancy defects and the formation of local haeckelite structures in graphene from tight-binding molecular dynamics", Phys. Rev. B - Condens. Matter Mater. Phys., 74(24), 245411. https://doi.org/10.1103/PhysRevB.74.245411
  28. Li, C. and Chou, T.W. (2003a), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
  29. Li, C. and Chou, T.W. (2003b), "Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators", Phys. Rev. B - Condens. Matter Mater. Phys., 68(7), 073405. https://doi.org/10.1103/PhysRevB.68.073405
  30. Li, C. and Chou, T.W. (2006), "Elastic wave velocities in single-walled carbon nanotubes", Phys. Rev. B - Condens. Matter Mater. Phys., 73(24), 245407. https://doi.org/10.1103/PhysRevB.73.245407
  31. Li, Y.S. and Pan, E. (2015), "Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory", Int. J. Eng. Sci., 97, 40-59. https://doi.org/10.1016/j.ijengsci.2015.08.009
  32. Liew, K.M., Wong, C.H., He, X.Q., Tan, M.J. and Meguid, S.A. (2004), "Nanomechanics of single and multiwalled carbon nanotubes", Phys. Rev. B - Condens. Matter Mater. Phys., 69(11), 115429. https://doi.org/10.1103/PhysRevB.69.115429
  33. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2015), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
  34. Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004
  35. Novoselov, K.S. (2011), "Nobel Lecture: Graphene: Materials in the Flatland", Rev. Mod. Phys., 83, 837-849. https://doi.org/10.1103/RevModPhys.83.837
  36. Ovesy, H.R. and Ghannadpour, S.A.M. (2011), "An exact finite strip for the initial postbuckling analysis of channel section struts", Comput. Struct., 89, 1785-1796. https://doi.org/10.1016/j.compstruc.2010.10.009
  37. Phiri, J., Johansson, L.S., Gane, P. and Maloney, T. (2018), "A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites", Compos. Part B Eng., 147, 104-113. https://doi.org/10.1016/j.compositesb.2018.04.018
  38. Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics", Comput. Mater. Sci., 47, 268-274. https://doi.org/10.1016/j.commatsci.2009.08.001
  39. Radic, N. and Jeremic, D. (2016), "Thermal buckling of double-layered graphene sheets embedded in an elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory", Compos. Part B Eng., 97, 201-215. https://doi.org/10.1016/j.compositesb.2016.04.075
  40. Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B - Condens. Matter Mater. Phys., 69(23), 235406. https://doi.org/10.1103/PhysRevB.69.235406
  41. Shen, L., Shen, H.-S. and Zhang, C.-L. (2010), "Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments", Comput. Mater. Sci., 48, 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006
  42. Soleimani, A., Naei, M.H. and Mosavi Mashadi, M. (2017), "Nonlocal postbuckling analysis of graphene sheets with initial imperfection based on first order shear deformation theory", Results Phys., 7, 1299-1307. https://doi.org/10.1016/j.rinp.2017.03.003
  43. Stradi, D., Martinez, U., Blom, A., Brandbyge, M. and Stokbro, K. (2016), "General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function", Phys. Rev. B, 93, 155302. https://doi.org/10.1103/PhysRevB.93.155302
  44. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., Int. J., 54, 755-769. https://doi.org/10.12989/sem.2015.54.4.755
  45. Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2016), "Beam buckling analysis by nonlocal integral elasticity finite element method", Int. J. Struct. Stab. Dyn., 16, 1550015. https://doi.org/10.1142/S0219455415500157
  46. Tavakolian, F., Farrokhabadi, A. and Mirzaei, M. (2017), "Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory", Microsyst. Technol., 23, 839-848. https://doi.org/10.1007/s00542-015-2785-z
  47. Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013). "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  48. Wang, Q. and Varadan, V.K. (2006), "Wave characteristics of carbon nanotubes", Int. J. Solids Struct., 43, 254-265. https://doi.org/10.1016/j.ijsolstr.2005.02.047
  49. Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294, 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005
  50. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
  51. Xu, Y.M., Shen, H.S. and Zhang, C.L. (2013), "Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments", Compos. Struct., 98, 294-302. https://doi.org/10.1016/j.compstruct.2012.10.041
  52. Young, R.J., Kinloch, I.A., Gong, L. and Novoselov, K.S. (2012), "The mechanics of graphene nanocomposites: A review", Compos. Sci. Technol., 72, 1459-1476. https://doi.org/10.1016/j.compscitech.2012.05.005
  53. Zhang, L.W., Zhang, Y. and Liew, K.M. (2017), "Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory", Appl. Math. Model., 49, 691-704. https://doi.org/10.1016/j.apm.2017.02.053
  54. Zibaei, I., Rahnama, H., Taheri-Behrooz, F. and Shokrieh, M.M. (2014), "First strain gradient elasticity solution for nanotube-reinforced matrix problem", Compos. Struct., 112, 273-282. https://doi.org/10.1016/j.compstruct.2014.02.023

피인용 문헌

  1. Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2019, https://doi.org/10.12989/anr.2021.10.1.001
  2. Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.091
  3. Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.083
  4. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2019, https://doi.org/10.12989/anr.2021.11.2.203