DOI QR코드

DOI QR Code

Effect of Habitat Diversity through Comparison of Spider Diversity between Upland and Paddy Fields in Agroecosystems of South Korea

농업생태계인 밭과 논에서 거미의 다양성 비교를 통한 서식지 중요성 연구

  • Received : 2019.03.21
  • Accepted : 2019.05.28
  • Published : 2019.06.30

Abstract

The study of spiders that function as predators in agroecosystem can broaden the understanding of agroecosystems. This study investigated the effect of heterogeneity at different spatial scales on richness and abundance of spiders in upland and paddy fields. We collected 48 samples using pitfall traps at upland and paddy fields, respectively. The total species richness of spiders estimated by sample- and coverage-based rarefaction and extrapolation curves. The total species richness was high in the upland fields at the total study sites, whereas the average species richness per study site was high in the paddy fields. We confirmed that the diversity enhancement of spiders was influenced by the structural complexity of habitat at field-scale, and crop diversity at broader scale.

서식지 이질성은 복잡한 구조를 가진 서식지일수록 생물다양성이 증가된다는 개념으로 농업생태계에서도 적용이 가능하다. 특히 농업생태계에서 해충 조절과 같이 포식자로 기능하는 거미를 이용할 경우 농업생태계의 전반에 관한 이해의 폭을 넓힐 수 있다. 본 연구는 우리나라 농업생태계의 대표적인 재배 유형인 밭과 논에서 거미의 다양성이 공간 스케일에 따라 어떠한 특성을 나타내는지 확인하고자 수행하였다. 함정트랩을 설치하여 밭에서 24개 샘플을, 논에서 24개 샘플을 수집하였다. 공간 스케일에 따른 밭과 논의 종수는 누적 곡선과 추정 곡선을 통해 평가하였다. 전체 조사 지점들에서 종수는 밭에서 높게 나타났고 조사 지점별 평균 종수는 논에서 높게 나타났다. 이를 통해 작은 공간 스케일에서는 서식지 구조의 복잡성이, 큰 공간 스케일에서는 작물 종류의 다양성이 거미의 다양성에 영향을 미치는 것을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 국립농업과학원

References

  1. Aebishcher, N.J. 1991. Twenty years of monitoring invertebrates and weeds in cereal fields in Sussex, p. 305-331. In: The Ecology of Temperate Cereal Fields (Firbank, L.G., N. Carter, J.F. Darbyshire and G.R. Potts, eds.). Blackwell Scientific Publications, Oxford.
  2. Altieri, M.A. 1999. The ecological role of biodiversity in agroecosystems. Agriculture Ecosystem & Environment 74: 19-31. https://doi.org/10.1016/S0167-8809(99)00028-6
  3. Askenmo, C.A., A. von Bromssen, J. Ekman and C. Jansson. 1997. Impact of some wintering birds on spider abundance in spruce. Oikos 28: 90-94. https://doi.org/10.2307/3543327
  4. Bazzaz, F.A. 1975. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56: 485-488. https://doi.org/10.2307/1934981
  5. Benton, T.G., J.A. Vickery and J.D. Wilson. 2003. Farmland biodiversity: is habitat heterogeneity the key? TRENDS in Ecology and Evolution 18: 182-188. https://doi.org/10.1016/S0169-5347(03)00011-9
  6. Caprio, E., B. Nervo, M. Isaia, G. Allegro and A. Rolando. 2015. Organic versus conventional systems in viticulture: comparative effects on spiders and carabids in vineyards and djacent forests. Agricultural Systems 136: 61-69. https://doi.org/10.1016/j.agsy.2015.02.009
  7. Chamberlain, D.E., R.J. Fuller, R.G.H. Bunce, J.C. Duckworth and M. Shrubb. 2000. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. Journal of Applied Ecology 37: 771-778. https://doi.org/10.1046/j.1365-2664.2000.00548.x
  8. Choe, L.J., K.J. Cho, S.K. Choi, S.H. Lee, M.K. Kim, H.S. Bang, J. Eo and M.H. Kim. 2016. Effects of landscape and management on ground-dwelling insect assemblages of farmland in Jeju Island, Korea. Entomological Research 46: 36-44. https://doi.org/10.1111/1748-5967.12146
  9. Churchill, T.B. 1997. Spiders as ecological indicators: an overview for Australia. Memoirs of Museum Victoria 56: 331-337. https://doi.org/10.24199/j.mmv.1997.56.21
  10. Clausen, I.H.S. 1986. The use of spiders (Araneae) as ecological indicators. Bulletin of British Arachnological Society 7: 83-86.
  11. Davidowitz, G. and M.L. Rosenzweig. 1998. The latitudinal gradient of species diversity among North American grasshoppers within a single habitat: a test the spatial heterogeneity hypothesis. Journal of Biogeography 25: 553-560. https://doi.org/10.1046/j.1365-2699.1998.2530553.x
  12. Donald, P.F., R.E. Green and M.F. Heath. 2001. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society B: Biological Sciences 268: 25-29. https://doi.org/10.1098/rspb.2000.1325
  13. Duffey, E. 1962. A population study of spiders in limestone grassland. Journal of Animal Ecology 31: 571-599. https://doi.org/10.2307/2054
  14. Duffey, E. 1968. An ecological analysis of the spider fauna of sand dunes. Journal of Animal Ecology 37: 641-674. https://doi.org/10.2307/3080
  15. Foelix, R.F. 1996. Biology of Spiders. Oxford University Press, Oxford, England.
  16. Gunnarsson, B. 1996. Bird predation and vegetation structure affecting spruce-living arthropods in a temperate forest. Journal of Animal Ecology 65: 389-397. https://doi.org/10.2307/5885
  17. Harwood, J.D., K.D. Sunderland and W.O.C. Symondson. 2001. Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. Journal of Applied Ecology 38: 88-99. https://doi.org/10.1046/j.1365-2664.2001.00572.x
  18. Henschell, J.R. and Y.D. Lubin. 1997. A test of habitat selection at two spatial scales in a sit and wait predator: A web spider in the Namib Desert dunes. Journal of Animal Ecology 66: 401-413. https://doi.org/10.2307/5985
  19. Kamura, T. 1987. Three species of the genus Drassyllus (Araneae: Gnaphosidae) from Japan. Acta Arachnologica 35: 77-88. https://doi.org/10.2476/asjaa.35.77
  20. Kim, B.W. and W. Lee. 2007. Spiders of the genus Draconarius (Araneae, Amaurobiidae) from Korea. The Journal of Arachnology 35: 113-128. https://doi.org/10.1636/H06-11.1
  21. Kim, S.T. and S.Y. Lee. 2013. Invertebrate fauna of Korea: Spiders. National Institute of Biological Resources, Incheon.
  22. Kovblyuk, M.M., Z.A. Kastrygina and M.M. Omelko. 2012. A review of the spider genus Haplodrassus Chamberlin, 1922 in Crimea (Ukraine) and adjacent areas (Araneae, Gnaphosidae). ZooKeys 205: 59-89. https://doi.org/10.3897/zookeys.205.3491
  23. Krebs, J.R., J.D. Wilson, R.B. Bradbury and G.M. Siriwardena. 1999. The second silent spring? Nature 400: 611-612. https://doi.org/10.1038/23127
  24. Lack, D. 1969. The numbers of bird species on islands. Bird Study 16: 193-209. https://doi.org/10.1080/00063656909476244
  25. Lawton, J.H. 1983. Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology 28: 23-39. https://doi.org/10.1146/annurev.en.28.010183.000323
  26. Liu, Y., J.C. Axmacher, C. Wang, L. Li and Z. Yu. 2010. Ground beetles (Coleoptera: Carabidae) in the intensively cultivated agricultural landscape of Northern China - implications for biodiversity conservation. Insect Conservation and Diversity 3: 34-43. https://doi.org/10.1111/j.1752-4598.2009.00069.x
  27. MacArthur, R.H. and E.O. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.
  28. Mansour, F. and U. Heimbach. 1993. Evaluation of lycosid, micryphantid and linyphiid spiders as predators of Rhopalosiphum padi (Hom.: Aphididae) and their functional response to prey density - laboratory experiments. Entomophaga 38: 79-87. https://doi.org/10.1007/BF02373142
  29. Marc, P., A. Canard and F. Ysnel. 1999. Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems & Environment 74: 229-273. https://doi.org/10.1016/S0167-8809(99)00038-9
  30. Mashavakure, N., A.B. Mashingaidze, R. Musundire, N. Nhamo, E. Gandiwa, C. Thierfelder and V.K. Muposhi. 2019. Spider community shift in response to farming practices in a sub-humid agroecosystem of southern Africa. Agriculture, Ecosystems & Environment 272: 237-245. https://doi.org/10.1016/j.agee.2018.11.020
  31. McCoy, E.D. and S.S. Bell. 1991. Habitat structure: the evolution and diversification of a complex topic, p. 3-27. In: Habitat Structure: the Physical Arrangement of Objects in Space (Bell, S.S., E.D. McCoy and H.R. Mushinsky, eds.). Chapman & Hall, London.
  32. Miyashita, T. and S. Niwa. 2006. A test for top-down cascade in a detritus-based food web by litter-dwelling web spiders. Ecological Research 21: 611-615. https://doi.org/10.1007/s11284-006-0155-0
  33. Morse, D.H. 1990. Leaf choices of nest-building crab spiders (Misumena vatia). Behavioral Ecology and Sociobiology 27: 265-267. https://doi.org/10.1007/BF00164898
  34. Namkung, J. 2001. The Spiders of Korea. Kyo-Hak Publishing Co., Seoul.
  35. Namkung, J., J.S. Yoo, S.Y. Lee, J.H. Lee, W.K. Paek and S.T. Kim. 2009. Bibliographic check list of Korean spiders (Arachnida: Araneae) ver. 2010. Journal of Korean Nature 2: 191-285. https://doi.org/10.1016/S1976-8648(14)60055-4
  36. Nentwig, W. 1993. Spiders of Panama: Biogeography, Investigation, Phenology, Check List, Key and Bibliography of a Tropical Spider Fauna. Sandhill Crane Press, Gainesville, USA.
  37. Nyffeler, N. and G. Benz. 1988. Feeding ecology and predatory importance of wolf spiders (Pardosa spp.) (Araneae, Lycosidae) in winter wheat fields. Journal of Applied Entomology 106: 123-134. https://doi.org/10.1111/j.1439-0418.1988.tb00575.x
  38. Okland, B. 1996. Unlogged forest: important sites for preserving the diversity of mycetophilids (Diptera: Sciaroidea). Biological Conservation 76: 297-310. https://doi.org/10.1016/0006-3207(95)00129-8
  39. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H. Stevens, E. Szoecs and H. Wagner. 2017. Community Ecology Pakcage. R package version 3.4.3. Available online at: http://Cran.R-prohect.org/package=vegan.
  40. Perner, J. and S. Malt. 2003. Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conservation of arable land into grassland. Agriculture, Ecosystems & Environment 98: 169-181. https://doi.org/10.1016/S0167-8809(03)00079-3
  41. R Development Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org. accessed 26 March 2018.
  42. Ralph, C.J. 1985. Habitat association patterns of forest and steppe birds of Northern Patagonia, Argentina. The Condor 87: 471-483. https://doi.org/10.2307/1367943
  43. Recanati, F. and G. Guariso. 2018. An optimization model for the planning of agroecosystems: Trading off socio-economic feasibility and biodiversity. Ecological Engineering 117: 194-204. https://doi.org/10.1016/j.ecoleng.2018.03.010
  44. Rushton, S.P. 1988. The effects of scrub management regimes on the spider fauna of chalk grassland, Castor Hanglands National Nature Reserve, Cambrideshire, UK. Biological Conservation 46: 169-182. https://doi.org/10.1016/0006-3207(88)90066-3
  45. Rushton, S.P. and M.D. Eyre. 1992. Grassland spider habitats in north-east England. Journal of Biogeography 19: 99-108. https://doi.org/10.2307/2845623
  46. Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688. https://doi.org/10.1038/163688a0
  47. Sotherton, N.W. 1998. Land-use changes and the decline of farmland wildlife: an appraisal of the set-aside approach. Biological Conservation 83: 259-268. https://doi.org/10.1016/S0006-3207(97)00082-7
  48. Sullivan, T.P. and D.S. Sullivan. 2001. Influence of variable retention harvests on forest ecosystems. II. Diversity and population dynamics of small mammals. Journal of Applied Ecology 38: 1234-1252. https://doi.org/10.1046/j.0021-8901.2001.00674.x
  49. Swift, M.J. and J.M. Anderson. 1994. Biodiversity and ecosystem function in agricultural systems, p. 15-41. In: Biodiversity and Ecosystem Function. Springer, Berlin, Heidelberg.
  50. Swift, M.J., J. Vandermeer, P.S. Ramakrishnan, J.M. Anderson, C.K. Ong and B.A. Hawkins. 1996. Biodiversity and agroecosystem function, p. 261-297. In: Functional Roles of Biodiversity: a Global Perspective (Mooney, H.A., J.H. Cushman, E. Medina, O.E. Sala and E.D. Schulze, eds.). Wiley, New York.
  51. Symondson, W.O.C., K.D. Sunderland and M.H. Greenstone. 2002. Can generalist predators be effective biocontrol agents? Annual Review of Entomology 47: 561-594. https://doi.org/10.1146/annurev.ento.47.091201.145240
  52. Tscharntke, T., A.M. Klein, A. Kruess, I. Steffan-Dewenter and C. Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management. Ecological Letter 8: 85-874.
  53. Turnbull, A.L. 1973. The ecology of true spiders (Araneomorphae). Annual Review of Entomology 18: 305-348. https://doi.org/10.1146/annurev.en.18.010173.001513
  54. Twes, J., U. Brose, V. Grimm, K. Tielborger, M.C. Wichmann, M. Schwager and F. Jeltsch. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79-92. https://doi.org/10.1046/j.0305-0270.2003.00994.x
  55. Uetz, G.W., A.D. Johnson and D.W. Schemske. 1978. Web placement, web structure, and prey capture in orb-weaving spiders. Bulletin British Arachnological Society 4: 141-148.
  56. Ugland, K.I., J.S. Gray and K.E. Ellingsen. 2003. The species-accumulation curve and estimation of species richness. Journal of Animal Ecology 72: 888-897. https://doi.org/10.1046/j.1365-2656.2003.00748.x
  57. Wardhaugh, C.W., N.E. Stork and W. Edwards. 2012. Feeding guild structure of beetles on Australian tropical rainforest trees reflects microhabitat resource availability. Journal of Animal Ecology 81: 1086-1094. https://doi.org/10.1111/j.1365-2656.2012.01988.x
  58. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213-251. https://doi.org/10.2307/1218190
  59. Ysnel, F. and A. Canard. 2000. Spider biodiversity in connection with the vegetation structure and the foliage orientation of hedges. Journal of Arachnology 28: 107-114. https://doi.org/10.1636/0161-8202(2000)028[0107:SBICWT]2.0.CO;2