DOI QR코드

DOI QR Code

Effect of methyl jasmonate on the glucosinolate contents and whole genome expression in Brassica oleracea

유묘기 양배추류에서 메틸자스모네이트에 의한 글루코시놀레이트 함량 변화 및 전사체 발현 분석

  • Lee, Jeongyeo (Korea Research Institute of Bioscience and Biotechnology) ;
  • Min, Sung Ran (Korea Research Institute of Bioscience and Biotechnology) ;
  • Jung, Jaeeun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, HyeRan (Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2019.08.10
  • Accepted : 2019.08.30
  • Published : 2019.09.30

Abstract

In this study, we analyzed the changes in glucosinolate content and gene expression in TO1000DH3 and Early big seedling upon methyl jasmonate (MeJA) treatment. Analysis of glucosinolate contents after MeJA treatment at $200{\mu}M$ concentration showed that the total glucosinolate content increased by 1.3-1.5 fold in TO1000DH3 and 1.3-3.8 fold in Early big compared to those before treatment. Aliphatic glucosinolates, progoitrin and gluconapin, were detected only in TO1000DH3, and the changes in the content of neoglucobrassicin were the greatest at 48 hours after MeJA treatment in TO1000DH3 and Early big. The transcriptomic analysis showed that transcripts involved in stress or defense reactions, or those related to growth were specifically expressed in TO1000DH3, while transcripts related to nucleosides or ATP biosynthesis were specifically expressed in Early big. GO analysis on transcripts with more than two-fold change in expression upon MeJA treatment, corresponding to 12,020 transcripts in TO1000DH3 and 13,510 transcripts in Early big, showed that the expression of transcripts that react to stimulus and chemical increased in TO1000DH3 and Early big, while those related to single-organism and ribosome synthesis decreased. In particular, the expression increased for all transcripts related to indole glucosinolate biosynthesis, which is associated with increase in glucobrassicin and neoglucobrassicin contents. Upon MeJA treatment, the expression of AOP3 (Bo9g006220, Bo9g006240), TGG1 (Bo14804s010) increased only in TO1000DH3, while the expression of Dof1.1 (Bo5g008360), UGT74C1 (Bo4g177540), and GSL-OH (Bo4g173560, Bo4g173550, Bo4g173530) increased specifically in Early big.

본 연구의 목적은 유묘기 TO1000DH3와 Early big에서 MeJA 처리에 의해 글루코시놀레이트 함량 변화 및 유전자의 발현 변화를 분석하기 위하여 수행되었다. $200{\mu}M$ 농도의 MeJA를 처리하여 글루코시놀레이트 함량을 분석한 결과, 글루코시놀레이트 총 함량이 처리 전보다 TO1000DH3에서 1.3~1.5배, Early big에서 1.3 ~ 3.8배 증가하였다. 알리패틱 글루코시놀레이트인 progoitrin과 gluconapin은 TO1000DH3에서만 검출되었으며, neoglucobrassicin 성분의 함량 변화가 MeJA 처리 48시간 후 TO1000DH3와 Early big에서 가장 크게 증가되었다. 전사체 분석을 통해 TO1000DH3에서는 stress나 defense 반응에 관여하거나, 생장과 관련된 전사체가 특이적으로 발현하고, Early big에서는 nucleoside 또는 ATP 생합성 관련 전사체가 특이적으로 발현하는 것을 알 수 있었다. MeJA를 처리함에 따라 발현이 2배 이상 변한 전사체를 TO1000DH3에서 12,020개, Early big에서 13,510개를 선발하여 GO 분석한 결과 stimulus, chemical에 반응하는 전사체의 발현이 공통적으로 증가하였고, single-organism 및 ribosome 합성 관련 전사체의 발현이 공통적으로 감소하였다. 특히 glucobrassicin, neoglucobrassicin 함량과 연관되어 발현이 증가한 인돌릭 글루코시놀레이트 생합성 관련 전사체의 발현이 모두 증가하였다 (MYB34 (Bo7g098110), IGMT2 (Bo8g070650), CYP81D1 (Bo6g056440), CYP81D4 (Bo7g118500), CYP81F4 (Bo1g004730, Bo01007s020), CYP81G1 (Bo4g154660), CYP83B1 (Bo8g024390) 및 CYP91A2 (Bo1g003710)). 글루코시놀레이트 생합성 경로 관련 유전자를 대표하는 전사체 104개를 선발하여 발현 양상을 분석한 결과 transcription factor에 속하는 MYB28, MYB51의 발현은 MeJA 처리 전에 비해 처리 후 발현양이 감소하였지만, 대부분의 전사체의 발현은 MeJA 처리에 의해 증가하였다. MeJA 처리에 의해 AOP3 (Bo9g006220, Bo9g006240), TGG1 (Bo14804s010)는 TO1000DH3에서만 특이적으로 발현이 증가하였고, Dof1.1 (Bo5g008360), UGT74C1 (Bo4g177540), GSL-OH (Bo4g173560, Bo4g173550, Bo4g173530)는 Early big 특이적으로 발현이 증가하였다. MeJA 처리 전 두 계통에서 발현이 가장 높은 글루코시놀레이트 생합성 관련 유전자는 GSTU20이었고, MeJA 처리에 의해 12시간 후TO1000DH3에서 CYP79B2 (Bo7g118840), Early big에서는 CYP79B3 (Bo4g149550)의 발현이 가장 많이 증가하였다.

Keywords

Acknowledgement

Supported by : 농림축산식품부

References

  1. Baenas N, Garcia-Viguera C, Moreno DA (2014) Biotic elicitors effectively increase the glucosinolates content in Brassicaceae sprouts. J Agric Food Chem 62:1881-1889 https://doi.org/10.1021/jf404876z
  2. Belser C, Istace B, Denis E, Dubarry M, Baurens FC, Falentin C, Genete M, Berrabah W, Chevre AM, Delourme R, Deniot G, Denoeud F, Duffe P, Engelen S, Lemainque A, Manzanares-Dauleux M, Martin G, Morice J, Noel B, Vekemans X, D'Hont A, Rousseau-Gueutin M, Barbe V, Cruaud C, Wincker P, Aury JM (2018) Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plants 4:879-887 https://doi.org/10.1038/s41477-018-0289-4
  3. Bhandari SR, Jo JS, Lee JG (2015) Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827-15841 https://doi.org/10.3390/molecules200915827
  4. Cartea ME, Velasco P, Obregon S, Padilla G, Haro A (2008) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403-410 https://doi.org/10.1016/j.phytochem.2007.08.014
  5. Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409-413 https://doi.org/10.1016/S0168-9525(03)00138-0
  6. Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557-566 https://doi.org/10.1007/s00299-004-0845-4
  7. Choi YH, Park KY, Lee SM, Yoo MA, Lee WH (1995) Inhibitory effect of the fresh juice of kale on the genotoxicity of aflatoxin B1. Korean J Genetic 17:183-190
  8. Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310-325 https://doi.org/10.1039/b9ay00280d
  9. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097 https://doi.org/10.2307/3870059
  10. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51 https://doi.org/10.1016/S0031-9422(00)00316-2
  11. Gao J, Yu X, Ma F, Li J (2014) RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic). PLoS One 9(2): e88804 https://doi.org/10.1371/journal.pone.0088804
  12. Goncalves ALM, Lemos M, Niero R, Andrade SF, Maistro EL (2012) Evaluation of the genotoxic and antigenotoxic potential of Brassica oleracea L. var. acephala D.C. in different cells of mice. J Ethnopharmacol 143:740-745 https://doi.org/10.1016/j.jep.2012.07.044
  13. Gutjahr C, Riemann M, Muller A, Duchting P, Weiler EW, Nick P (2005) Cholodny-Went revisited: a role for jasmonate in gravitropism of rice coleoptiles. Planta 222:575-585 https://doi.org/10.1007/s00425-005-0001-6
  14. Hagen SF, Borge GIA, Solhaug KA, Bengtsson GB (2009) Effect of cold storage and harvest date on bioactive compounds in curly kale (Brassica oleracea L. var. acephala). Postharvest Biol Technol 51:36-42 https://doi.org/10.1016/j.postharvbio.2008.04.001
  15. Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2:425-431 https://doi.org/10.1016/S1360-1385(97)90026-1
  16. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55: 224-236 https://doi.org/10.1016/j.phrs.2007.01.009
  17. Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21:425-447 https://doi.org/10.1039/b204039p
  18. Hwang ES, Hong EY, Kim GH (2012) Determination of bioactive compounds and anti-biocancer effect from extracts of Korean cabbage and cabbage. Korean J Food Nutr 25:259-265 https://doi.org/10.9799/ksfan.2012.25.2.259
  19. Islam MM, Tani C, Watanabe-Sugimoto M (2009) Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells. Plant Cell Physiol 50:1171-1175 https://doi.org/10.1093/pcp/pcp066
  20. Izzah NK, Lee J, Jayakodi M, Perumal S, Jin M, Park BS, Ahn K, Yang TJ (2014) Transcriptome sequencing of two parental lines of cabbage (Brassica oleracea L. var. capitata L.) and construction of an EST-based genetic map. BMC Genomics 15:149 https://doi.org/10.1186/1471-2164-15-149
  21. Keck AS, Finley JW (2004) Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr Cancer Ther 3:5-12 https://doi.org/10.1177/1534735403261831
  22. Ketchum REB, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:97-105 https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1<97::AID-BIT11>3.0.CO;2-C
  23. Keum YS, Jeong WS, Kong ANT (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res Fundam Mol Mech Mutagen 555:191-202 https://doi.org/10.1016/j.mrfmmm.2004.05.024
  24. Kim JA, Bae KH, Choi YE (2015) Effect of elicited by methyl jasmonate on the saponin contents of Codonopsis lanceolate. J Plant Biotechnol 42:265-270 https://doi.org/10.5010/JPB.2015.42.3.265
  25. Kim OT, Bang KH, Kim YC, Hyu DY, Kim MY (2009) Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tissue Organ Cult 98:25-33 https://doi.org/10.1007/s11240-009-9535-9
  26. Kim OT, Bang KH, Shin YS, Lee MJ, Jung SJ, Hyun DY, Kim YC, Seong NS, Cha SW (2007) Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Rep 26:1941-1949 https://doi.org/10.1007/s00299-007-0400-1
  27. Kim YS, Hahn EJ, Murthy HN, Paek KY (2004) Adventitious root growth and ginsenoside accumulation in Panax ginseng cultres as affected by methyl jasmonate. Biotechnol Lett 26:1619-1622 https://doi.org/10.1007/s10529-004-3183-2
  28. Kim YS, Milner JA (2005) Targets for indole-3-carbinol in cancer prevention. J Nutr Biochem 16:65-73 https://doi.org/10.1016/j.jnutbio.2004.10.007
  29. Kim YW, Jung HJ, Park JI, Hur Y, Nou IS (2014) Response of NBS encoding resistance genes linked to both heat and fungal stress in Brassica oleracea. Plant Physiol Biochem 86:130-136 https://doi.org/10.1016/j.plaphy.2014.11.009
  30. Kowalsky SP, Lan TH, Feldmann KA, Paterson AH (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea. G3 138:499-510
  31. Kukurba KR, Montgomery SB (2015) RNA Sequencing and Analysis. Cold Spring Harb Protoc 11:951-969
  32. Lee SM, Rhee SH, Park KY (1997) Antimutagenic effect of various cruciferous vegetables in salmonella assaying system. J Food Hyg Saf 12:321-327
  33. Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, Yu Y, Clouthier SG, Schwartz SJ, Wicha MS, Sun D (2010) Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res 16:2580-2590 https://doi.org/10.1158/1078-0432.CCR-09-2937
  34. Li Z, Liu Y, Li L, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H (2019) Transcriptome reveals the gene expression patterns of sulforaphane metabolism in broccoli florets. PLoS ONE 14(3): e0213902 https://doi.org/10.1371/journal.pone.0213902
  35. Lim HS (2002) The study for contents of sinigrin in dolsan leaf mustard kimchi during fementation periods. Korean J Life Sci 12:523-527 https://doi.org/10.5352/JLS.2002.12.5.523
  36. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park BS, Cheng PRF, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee TH, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930 https://doi.org/10.1038/ncomms4930
  37. Moon J, Jeong MJ, Lee SI, Lee JG, Hwang H, Yu J, Kim YR, Park SW, Kim JA (2015) Effect of LED mixed light conditions on the glucosinolate pathway in Brassica rapa. J Plant Biotechnol 42:245-256 https://doi.org/10.5010/JPB.2015.42.3.245
  38. Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F, Belcram H, Links MG, Just J, Clarke C, Bender T, Huebert T, Mason AS, Pires JC, Barker G, Moore J, Walley PG, Manoli S, Batley J, Edwards D, Nelson MN, Wang X, Paterson AH, King G, Bancroft I, Chalhoub B, Sharpe AG (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77 https://doi.org/10.1186/gb-2014-15-6-r77
  39. Poiroux-Gonord F, Bidel LP, Fanciullino AL, Gautier H, Lauri-Lopez F, Urban L (2010) Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J Agr Food Chem 58:12065-12082 https://doi.org/10.1021/jf1037745
  40. Rajashekar CB, Carey EE, Zhao X, Oh MM (2009) Health-promoting phytochemicals in fruits and vegetables: Impact of abiotic stresses and crop production practices. Functional Plant Sci Biotechnol 3:30-38
  41. Rangkadilok N, Nicolas ME, Bennett RN, Eagling DR, Premier RR, Taylor PW (2004) The effect of sulfur fertilizer on glucoraphanin levels in broccoli (B. oleracea L. var. italica) at different growth stages. J Agric Food Chem 52: 2632-2639 https://doi.org/10.1021/jf030655u
  42. Robin AHK, Yi GE, Laila R, Yang K, Park JI, Kim HR, Nou IS (2016) Expression profiling of glucosinolate biosynthetic genes in Brassica oleracea L. var. capitata inbred lines reveals their association with glucosinolate content. Molecules 21:787-805 https://doi.org/10.3390/molecules21060787
  43. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome P450cam at atomic resolution, Science 287:1615-1622 https://doi.org/10.1126/science.287.5458.1615
  44. Schreiner M (2005) Vegetable crop management strategies to increase the quantity of phytochemicals. European J Nutr 44:85-94 https://doi.org/10.1007/s00394-004-0498-7
  45. Soto A, Ruiz KB, Ziosi V, Costa G, Torrigiani P (2012) Ethylene and auxin biosynthesis and signaling are impaired by methyl jasmonate leading to a transient slowing down of ripening in peach fruit. J Plant Physiol 169:1858-1865 https://doi.org/10.1016/j.jplph.2012.07.007
  46. Sun B, Liu N, Zhao Y, Yan H, Wang Q (2011) Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem 124:941-947 https://doi.org/10.1016/j.foodchem.2010.07.031
  47. Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135-142 https://doi.org/10.1016/j.gene.2011.07.021
  48. Xing M, Lv H, Ma J, Xu D, Li H, Yang L, Kang J, Wang X, Fang Z (2016) Transcriptome profiling of resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea) roots. PLoS One 11(2):e0148048 https://doi.org/10.1371/journal.pone.0148048
  49. Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and ba-ccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129-1132 https://doi.org/10.1038/nbt0996-1129
  50. Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: Chemistry and mechanisms. Cancer Res 54:1976-1981
  51. Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus epithiospecifier modifier1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524-1536 https://doi.org/10.1105/tpc.105.039602
  52. Zhao Z, Zhang W, Stanley BA, Assmann SM (2008) Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210-3226 https://doi.org/10.1105/tpc.108.063263