DOI QR코드

DOI QR Code

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3

  • Tan, Wanbin (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences) ;
  • Long, Pengcheng (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences) ;
  • Sun, Guangyao (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences) ;
  • Zou, Jun (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences) ;
  • Hao, Lijuan (Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences)
  • Received : 2019.01.16
  • Accepted : 2019.05.15
  • Published : 2019.10.25

Abstract

Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.

Keywords

Acknowledgement

Supported by : Chinese Academy of Sciences, National Natural Science Foundation of China

References

  1. D.R. Olander, E. Greenspan, H.D. Garkisch, B. Petrovic, Uraniumezirconium hydride fuel properties, Nucl. Eng. Des. 239 (2009) 1406-1424. https://doi.org/10.1016/j.nucengdes.2009.04.001
  2. I. Mele, M. Ravnik, A. Trkov, TRIGA Mark II benchmark experiment, Part I: steady-state operation, Nucl. Technol. 105 (1994) 37-51. https://doi.org/10.13182/NT94-A34909
  3. I. Mele, M. Ravnik, A. Trkov, TRIGA Mark II benchmark experiment; Part II: pulse operation, Nucl. Technol. 105 (1994) 52-58. https://doi.org/10.13182/NT94-1
  4. R. Jeraj, M. Ravnik, TRIGA Mark II Benchmark Critical Experiment, International Handbook of Evaluated Critical Safety Benchmark Experiments," IEU-COMPTHERM-003, Organization for Economic Cooperation and Development0Nuclear Energy Agency Data Bank, 1999.
  5. R. Jeraj, B. Glumac, M. Maucec, Monte Carlo simulation of the TRIGA Mark II benchmark experiment, Nucl. Technol. 120 (1997) 179-187. https://doi.org/10.13182/NT97-A35409
  6. M. Tombakoglu, Y. Cecen, Control Rod Worth Evaluation of TRIGA Mark II Reactor, 2001.
  7. M. Ravnik, R. Jeraj, Research reactor benchmarks, Nucl. Sci. Eng. 145 (2003) 145-152. https://doi.org/10.13182/NSE03-A2370
  8. R. Henry, I. Tiselj, L. Snoj, Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP, Appl. Radiat. Isot. 97 (2015) 140-148. https://doi.org/10.1016/j.apradiso.2014.12.017
  9. D. Calic, G. Zerovnik, A. Trkov, L. Snoj, Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments, Appl. Radiat. Isot. 107 (2016) 165-170. https://doi.org/10.1016/j.apradiso.2015.10.022
  10. H. Rehman, S. Ahmad, Neutronics analysis of TRIGA Mark II research reactor, Nucl. Eng. Technol. 50 (2017) 35-42. https://doi.org/10.1016/j.net.2017.11.003
  11. Y. Wu, J. Song, H. Zheng, G. Sun, L. Hao, P. Long, L. Hu, CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC, Ann. Nucl. Energy 82 (2015) 161-168. https://doi.org/10.1016/j.anucene.2014.08.058
  12. X. MCNP, Monte Carlo Team, MCNP da General Monte Carlo N-Particle Transport Code, 2005. Version, 5.
  13. Y. Wu, Multifunctional Neutronics Calculation Methodology and Program for Nuclear Design and Radiation Safety Evaluation, Fusion Science & Technology, 2018, pp. 1-9.
  14. Y. Wu, Conceptual design of the China fusion power plant FDS-II, Fusion Eng. Des. 83 (2008) 1683-1689. https://doi.org/10.1016/j.fusengdes.2008.06.048
  15. Y. Wu, J. Jiang, M.Y. Wang, M. Jin, F. Team, A fusion-driven subcritical system concept based on viable technologies, Nucl. Fusion 51 (2011) 103036. https://doi.org/10.1088/0029-5515/51/10/103036
  16. Y. Wu, Y. Bai, Y. Song, Q. Huang, Z. Zhao, L. Hu, Development strategy and conceptual design of China lead-based research reactor, Ann. Nucl. Energy 87 (2016) 511-516. https://doi.org/10.1016/j.anucene.2015.08.015
  17. Y. Wu, Z. Chen, L. Hu, M. Jin, Y. Li, J. Jiang, J. Yu, C. Alejaldre, E. Stevens, K. Kim, Identification of safety gaps for fusion demonstration reactors, Nature Energy 1 (2016) 16154. https://doi.org/10.1038/nenergy.2016.154
  18. Y. Wu, Design and R&D progress of China lead-based reactor for ADS research facility, Engineering 2 (2016) 124-131. https://doi.org/10.1016/J.ENG.2016.01.023
  19. Y. Wu, CAD-based interface programs for fusion neutron transport simulation, Fusion Eng. Des. 84 (2009) 1987-1992. https://doi.org/10.1016/j.fusengdes.2008.12.041
  20. Y. Wu, Development of high intensity DeT fusion neutron generator HINEG, Int. J. Energy Res. 42 (2018) 68-72. https://doi.org/10.1002/er.3572
  21. Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song, S. Gao, Progress in development of China Low Activation Martensitic steel for fusion application, J. Nucl. Mater. 367 (2007) 142-146. https://doi.org/10.1016/j.jnucmat.2007.03.153
  22. Y. Wu, Design status and development strategy of China liquid lithiumelead blankets and related material technology, J. Nucl. Mater. 367 (2007) 1410-1415. https://doi.org/10.1016/j.jnucmat.2007.04.031
  23. Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R.J. Kurtz, R. Lindau, T. Muroga, G.R. Odette, Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nucl. Mater. (2013) 442.
  24. Q. Huang, Status and improvement of CLAM for nuclear application, Nucl. Fusion 57 (2017), 086042. https://doi.org/10.1088/1741-4326/aa763f
  25. Q. Gan, B. Wu, S. Yu, J. Song, Y. Wang, CAD-based hierarchical geometry conversion method for modeling of fission reactor cores, Ann. Nucl. Energy 94 (2016) 369-375. https://doi.org/10.1016/j.anucene.2016.03.013
  26. L. Snoj, A. Trkov, M. Ravnik, G. Zerovnik, Testing of cross section libraries on zirconium benchmarks, Ann. Nucl. Energy 42 (2012) 71-79. https://doi.org/10.1016/j.anucene.2011.12.001
  27. I. Lengar, A. Trkov, M. Kromar, L. Snoj, Digital meter of reactivity for use during zero-power physics tests at the Krsko NPP (Uporaba digitalnega merilnika reaktivnosti pri zagonskih testih na nicelni moci v NE Krsko), J. Energy Technol.-JET 5 (2012) 13-26.
  28. T. Zagar, M. Ravnik, A. Trkov, Isothermal Temperature Reactivity Coefficient Measurement in Triga Reactor, 2002.

Cited by

  1. The development of fuel management code TRACS for HFETR based on Unstructured-mesh variational nodal method vol.166, 2022, https://doi.org/10.1016/j.anucene.2021.108807