DOI QR코드

DOI QR Code

바이패스비에 따른 배기가스의 적외선 신호측정 실험연구

An Experimental Study of the Infrared Signal for Exhaust Plume with Bypass Ratio

  • Joo, Milee (Aerospace Engineering Department, Jeonbuk National University) ;
  • Jo, Sungpil (Aerospace Engineering Department, Jeonbuk National University) ;
  • Choi, Seongman (Aerospace Engineering Department, Jeonbuk National University) ;
  • Jo, Hana (Aerospace Technology Research Institute-Agency for Defense Development)
  • 투고 : 2019.08.12
  • 심사 : 2019.09.11
  • 발행 : 2019.10.01

초록

마이크로 터보제트 엔진을 사용하여 바이패스비에 따른 배기가스의 적외선 신호와 온도분포 측정 연구를 수행하였다. 본 연구에서는 마이크로 터보제트 엔진을 바이패스 공기를 공급하여 터보팬 엔진의 유동을 모사할 수 있도록 개조하였다. 마이크로 터보제트 엔진으로 코어 유동을 모사하고 고압의 압축 공기를 마이크로 터보제트 엔진의 외부덕트에 공급하여 바이패스 유동을 모사하였다. 바이패스비 0.5, 1.0, 1.4 의 3가지 조건에서 실험을 수행하였다. 그 결과 적외선 신호는 바이패스비가 증가할수록 점차 감소함을 보여주었다. 그리고 배기가스 온도는 바이패스비가 증가할수록 감소됨을 알 수 있었다. 또한 배기가스에 대한 쉴리렌 가시화 측정을 수행하였다. 배기가스의 온도분포와 쉴리렌 유동 가시화로부터 바이패스비에 따른 배기가스의 제트유동구조를 이해할 수 있다.

Infrared signal and exhaust gas temperature distribution with bypass ratio were measured using a micro turbojet engine. Micro turbojet engine was modified to simulate the turbofan engine behaviour. Core flow was simulated using the jet flow of the micro turbojet engine, and high-pressure air was supplied to its external duct to simulate bypass flow. The effects of bypass ratios (0.5, 1.0, and 1.4) were examined. The experimental results indicate that the infrared signal decreases as the bypass ratio increases. And also gas temperature decreases with bypass ratios. Additionally, Schlieren visualization of the exhaust gas plume was conducted. From the exhaust gas temperature distribution and Schlieren images, the structure of jet plume with various bypass ratios was understood.

키워드

참고문헌

  1. Mahulikar, S.P., Sonawane, H.R., and Rao, G.A., “Infrared Signature Studies of Aerospace Vehicles,” Progress in Aerospace Science, Vol. 43, No. 7-8, pp. 218-248, 2007. https://doi.org/10.1016/j.paerosci.2007.06.002
  2. Mahulikar, S.P., Potnuru, S.K., and Kolhe, P.S., “Analytical Estimation of Solid Angle Subtended by Complex Well-resolved Surfaces for Infrared Detection Studies,” Applied Optics, Vol. 46, No. 22, pp. 4991-4998, 2007. https://doi.org/10.1364/AO.46.004991
  3. Mark D., Jane's Aero-Engines 2017-2018, IHS Jane's, Coulsdon, United Kingdom, Ch. 7, 2017.
  4. Decher, R., “Infrared Emission from Turbofans with High Aspect Ratio Nozzle,” Journal of Propulsion and Power, Vol. 20, No. 3, pp. 527-532, 2004. https://doi.org/10.2514/1.4612
  5. Lee, H.J., Lee, J.H., Myong, R.S., Kim, S.M., Choi, S.M., and Kim, W.C., “Computational and Experimental Investigation of Thermal Flow Field of Micro Turbojet Engine with Various Nozzle Configurations,” Journal of the Korean Society for Aeronautical and Space Science, Vol. 46, No. 2, pp. 150-158, 2018. https://doi.org/10.5139/JKSAS.2018.46.2.150
  6. Park, G.S., Kim, S.M., Choi, S.M., and Kim, W.C., “Experimental Study of a Micro Turbo Jet Engine Performance and IR Signal with Nozzle Configuration,” Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 5, pp. 1-8, 2016. https://doi.org/10.6108/KSPE.2016.20.5.001
  7. Kim, S.M., Lee, J.S., Choi, S.M., Myoung, R.S., and Kim, W.C., "An Experimental Study of the Infrared Signal Characteristics on the S-Nozzle Plume of the Micro Turbojet Engine," 48th KSPE Spring Conference, Jeju, Korea, pp. 583-586, May 2017.
  8. Lee, J.S., Joo, M.L., Jo, S.P., and Choi. S.M., "A Visualization Study of Micro Gas Turbine Engine Exhaust Plume," 51th KSPE Fall Conference, Busan, Korea, pp. 724-726, December 2018.