DOI QR코드

DOI QR Code

Phytopythium and Pythium Species (Oomycota) Isolated from Freshwater Environments of Korea

  • Nam, Bora (Department of Biology, College of Natural Sciences, Kunsan National University) ;
  • Choi, Young-Joon (Department of Biology, College of Natural Sciences, Kunsan National University)
  • Received : 2018.12.30
  • Accepted : 2019.05.20
  • Published : 2019.09.30

Abstract

Oomycetes are widely distributed in various environments, including desert and polar regions. Depending upon different habits and hosts, they have evolved with both saprophytic and pathogenic nutritional modes. Freshwater ecosystem is one of the most important habitats for members of oomycetes. Most studies on oomycete diversity, however, have been biased mostly towards terrestrial phytopathogenic species, rather than aquatic species, although their roles as saprophytes and parasites are essential for freshwater ecosystems. In this study, we isolated oomycete strains from soil sediment, algae, and decaying plant debris in freshwater streams of Korea. The strains were identified based on cultural and morphological characteristics, as well as molecular phylogenetic analyses of ITS rDNA, cox1, and cox2 mtDNA sequences. As a result, we discovered eight oomycete species previously unknown in Korea, namely Phytopythium chamaehyphon, Phytopythium litorale, Phytopythium vexans, Pythium diclinum, Pythium heterothallicum, Pythium inflatum, Pythium intermedium, and Pythium oopapillum. Diversity and ecology of freshwater oomycetes in Korea are poorly understood. This study could contribute to understand their distribution and ecological function in freshwater ecosystem.

Keywords

Acknowledgement

Supported by : Nakdonggang National Institute of Biological Resources [NNIBR]

References

  1. Beakes GW, Honda D, Thines M. 3 systematics of the straminipila: labyrinthulomycota, hyphochytriomycota, and oomycota. In: McLaughlin DJ, Spatafora JW, editors. Systematics and evolution. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 39-97.
  2. Sekimoto S, Beakes GW, Gachon CMM, et al. The development, ultrastructural cytology, and molecular phylogeny of the basal oomycete Eurychasma dicksonii, infecting the filamentous phaeophyte algae Ectocarpus siliculosus and Pylaiella littoralis. Protist. 2008;159:299-318. https://doi.org/10.1016/j.protis.2007.11.004
  3. Choi YJ, Lee SH, Nguyen TTT, et al. Characterization of Achlya americana and A. bisexualis (Saprolegniales, Oomycota) isolated from freshwater environments in Korea. Mycobiology. 2019;47:135-142. https://doi.org/10.1080/12298093.2018.1551855
  4. Sarowar M. Infection strategies of pathogenic oomycetes in fish. In: Jones EBG, Hyde KD, Pang K-L, editors. Freshwater Fungi and Fungal-like Organisms. Berlin, Germany: de Gruyter; 2014. p. 217-243.
  5. Thines M, Kamoun S. Oomycete-plant coevolution: recent advances and future prospects. Curr Opin Plant Biol. 2010;13:427-433. https://doi.org/10.1016/j.pbi.2010.04.001
  6. Thines M. Phylogeny and evolution of plant pathogenic oomycetes-a global overview. Eur J Plant Pathol. 2014;138:431-447. https://doi.org/10.1007/s10658-013-0366-5
  7. Wong MKM, Goh TK, Hodgkiss I, et al. Role of fungi in freshwater ecosystems. Biodivers Conserv. 1998;7:1187-1206. https://doi.org/10.1023/A:1008883716975
  8. Wurzbacher C, Kerr J, Grossart HP. Aquatic fungi. In: Grillo O, Venora G, editors. The dynamical processes of biodiversity - case studies of evolution and spatial distribution. Rijeka, Croatia: IntechOpen; 2011. Available from: https://www.intechopen.com/books/the-dynamical-processes-ofbiodiversity-case-studies-of-evolution-and-spatialdistribution/aquatic-fungi.
  9. Ruthig GR. Water molds of the genera Saprolegnia and Leptolegnia are pathogenic to the North American frogs Rana catesbeiana and Pseudacris crucifer, respectively. Dis Aquat Org. 2009;84:173-178. https://doi.org/10.3354/dao02042
  10. Fernandez-Beneitez MJ, Ortiz-Santaliestra ME, Lizana M, et al. Saprolegnia diclina: another species responsible for the emergent disease 0Saprolegnia infections' in amphibians. FEMS Microbiol Lett. 2008;279:23-29. https://doi.org/10.1111/j.1574-6968.2007.01002.x
  11. Sekimoto S, Yokoo K, Kawamura Y, et al. Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, straminipiles), a unicellular obligate endoparasite of Bangia and Porphyra spp. (Bangiales, Rhodophyta). Mycol Res. 2008;112:361-374. https://doi.org/10.1016/j.mycres.2007.11.002
  12. Kim GH, Moon KH, Kim JY, et al. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae. 2014;29:249-265. https://doi.org/10.4490/algae.2014.29.4.249
  13. Jeong Lee S, Sook Hwang M, Ae Park M, et al. Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers. Algae. 2015;30:217-222. https://doi.org/10.4490/algae.2015.30.3.217
  14. Shin S, Kulatunga DCM, Dananjaya SHS, et al. Saprolegnia parasitica isolated from Rainbow Trout in Korea: Characterization, anti-Saprolegnia activity and host pathogen interaction in Zebrafish Disease Model. Mycobiology. 2017;45:297-311. https://doi.org/10.5941/MYCO.2017.45.4.297
  15. Nechwatal J, Wielgoss A, Mendgen K. Diversity, host, and habitat specificity of oomycete communities in declining reed stands (Phragmites australis) of a large freshwater lake. Mycol Res. 2008;112:689-696. https://doi.org/10.1016/j.mycres.2007.11.015
  16. Nechwatal J, Mendgen K. Pythium litorale sp. nov., a new species from the littoral of Lake Constance, Germany. FEMS Microbiol Lett. 2006;255:96-101. https://doi.org/10.1111/j.1574-6968.2005.00058.x
  17. Hadar Y, Mandelbaum R. Suppression of Pythium aphanidermatum damping-off in container media containing composted liquorice roots. Crop Protect. 1986;5:88-92. https://doi.org/10.1016/0261-2194(86)90086-4
  18. Craft CM, Nelson EB. Microbial properties of composts that suppress damping-off and root rot of creeping bentgrass caused by Pythium graminicola. Appl Environ Microbiol. 1996;62:1550-1557. https://doi.org/10.1128/AEM.62.5.1550-1557.1996
  19. Deadman M. Pythium damping off and root-rot. In: Keinath AP, Wintermantel WM, Zitter TA, editors. Compendium of cucurbit diseases and pests. Saint Paul: APS Press; 2017. p. 48-50.
  20. Ho H. The taxonomy and biology of Phytophthora and Pythium. J Bacteriol Mycol: Open Access. 2018;6:00174.
  21. Van der Plaats-Niterink AJ. Monograph of the genus Pythium. Stud Mycol. 1981;1:1-242.
  22. Andre Levesque C, De Cock A. Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res. 2004;108:1363-1383. https://doi.org/10.1017/S0953756204001431
  23. Bala K, Robideau GP, Levesque CA, et al. Phytopythium Abad, de Cock, Bala, Robideau, Lodhi and Levesque, gen. nov. and Phytopythium sindhum Lodhi, Shahzad, and Levesque, sp. nov. Persoonia. 2010;24:136-137.
  24. de Cock A, Lodhi AM, Rintoul TL, et al. Phytopythium: molecular phylogeny and systematics. Persoonia. 2015;34:25-39. https://doi.org/10.3767/003158515X685382
  25. Baten MA, Asano T, Motohashi K, et al. Phylogenetic relationships among Phytopythium species and re-evaluation of Phytopythium fagopyri comb. nov., recovered from damped-off buckwheat seedlings in Japan. Mycol Prog. 2014;13:1003. https://doi.org/10.1007/s11557-014-1003-1
  26. Jesus ALd, Goncalves DR, Rocha SCO, et al. Morphological and phylogenetic analyses of three Phytopythium species (Peronosporales, Oomycota) from Brazil. Cryptogamie Mycol. 2016;37:117-128. https://doi.org/10.7872/crym/v37.iss1.2016.117
  27. White T, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand D, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc; 1990. p. 315-322.
  28. Robideau GP, De Cock AW, Coffey MD, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11:1002-1011. https://doi.org/10.1111/j.1755-0998.2011.03041.x
  29. Hudspeth DS, Nadler SA, Hudspeth ME. A cox2 molecular phylogeny of the Peronosporomycetes. Mycobiology. 2000;92:674.
  30. Choi Y-J, Beakes G, Glockling S, et al. Towards a universal barcode of oomycetes - a comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015;15:1275-1288. https://doi.org/10.1111/1755-0998.12398
  31. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772-780. https://doi.org/10.1093/molbev/mst010
  32. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9:212. https://doi.org/10.1186/1471-2105-9-212
  33. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  34. Matthews VD. Studies on the genus Pythium. Chapel Hill: The University of North Carolina Press; 1931.
  35. Middleton JT. The taxonomy, host range and geographic distribution of the genus Pythium. Memoirs Torrey Bot Club. 1943;20:1-171.
  36. Belbahri L, McLeod A, Paul B, et al. Intraspecific and within-isolate sequence variation in the ITS rRNA gene region of Pythium mercuriale sp. nov. (Pythiaceae). FEMS Microbiol Lett. 2008;284:17-27. https://doi.org/10.1111/j.1574-6968.2008.01168.x
  37. Long Y, Wei J, Huang C, et al. A new Pythium species isolated from vegetable fields and analysis by rDNA ITS sequence. Mycosystema. 2010;29:795-800.
  38. Chenari Bouket A, Arzanlou M, Tojo M, et al. A web-based identification programme for Pythium species. Arch Phytopathol Plant Protect. 2015;48:475-484. https://doi.org/10.1080/03235408.2015.1024043
  39. Robideau GP, Rodrigue N, Andre Levesque C. Codon-based phylogenetics introduces novel flagellar gene markers to oomycete systematics. Mol Phylogen Evol. 2014;79:279-291. https://doi.org/10.1016/j.ympev.2014.04.009
  40. Al-Sheikh H, Abdelzaher H. Occurrence, identification and pathogenicity of Pythium aphanidermatum, P. diclinum, P. dissotocum and Pythium "Group P" isolated from Dawmat Al-Jandal Lake, Saudi Arabia. Res J Environ Sci. 2012;6:196-209. https://doi.org/10.3923/rjes.2012.196.209
  41. Choudhary CE, Burgos-Garay ML, Moorman GW, et al. Pythium and Phytopythium species in two Pennsylvania greenhouse irrigation water tanks. Plant Dis. 2016;100:926-932. https://doi.org/10.1094/PDIS-07-15-0836-RE
  42. Shrestha SK, Zhou Y, Lamour K. Oomycetes baited from streams in Tennessee 2010-2012. Mycologia. 2013;105:1516-1523. https://doi.org/10.3852/13-010
  43. Uzuhashi S, Okada G, Ohkuma M. Four new Pythium species from aquatic environments in Japan. Antonie Van Leeuwenhoek. 2015;107:375-391. https://doi.org/10.1007/s10482-014-0336-8
  44. Rodriguez Padron C, Siverio F, Perez-Sierra A, et al. Isolation and pathogenicity of Phytophthora species and Phytopythium vexans recovered from avocado orchards in the Canary Islands, including Phytophthora niederhauserii as a new pathogen of avocado. Phytopathol Mediterr. 2018;57:89-106.
  45. Spies CFJ, Mazzola M, McLeod A. Characterisation and detection of Pythium and Phytophthora species associated with grapevines in South Africa. Eur J Plant Pathol. 2011;131:103-119. https://doi.org/10.1007/s10658-011-9791-5
  46. Tewoldemedhin YT, Mazzola M, Botha WJ, et al. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur J Plant Pathol. 2011;130:215-229. https://doi.org/10.1007/s10658-011-9747-9
  47. Abdelzaher H. Occurrence of damping-off of wheat caused by Pythium diclinum tokunaga in El- Minia, Egypt and its possible control by Gliocladium roseum and Trichoderma harzianum. Arch Phytopathol Plant Protect. 2004;37:147-159. https://doi.org/10.1080/0323540042000205893
  48. Radmer L, Anderson G, Malvick DM, et al. Pythium, Phytophthora, and Phytopythium spp. associated with soybean in Minnesota, their relative aggressiveness on soybean and corn, and their sensitivity to seed treatment fungicides. Plant Dis. 2017;101:62-72. https://doi.org/10.1094/PDIS-02-16-0196-RE
  49. Zitnick-Anderson KK, Nelson BD. Identification and pathogenicity of Pythium on soybean in North Dakota. Plant Dis. 2015;99:31-38. https://doi.org/10.1094/PDIS-02-14-0161-RE
  50. Cao Y, Li Y, Li J, et al. Rapid and quantitative detection of Pythium inflatum by real-time fluorescence loop-mediated isothermal amplification assay. Eur J Plant Pathol. 2016;144:83-95. https://doi.org/10.1007/s10658-015-0752-2
  51. Czeczuga B, Kiziewicz B, Godlewska A, et al. Further studies on aquatic fungi in the River Narew within the Narew National Park. Rocz Akad Med Bialymst. 2002;47:58-79.
  52. Johnson TW. Aquatic fungi of Iceland: Pythium. Mycologia. 1971;63:517-536. https://doi.org/10.1080/00275514.1971.12019132
  53. Allain-Boule N, Tweddell R, Mazzola M, et al. Pythium attrantheridium sp. nov.: taxonomy and comparison with related species. Mycol Res. 2004;108:795-805. https://doi.org/10.1017/S095375620400053X
  54. Bala K, Robideau G, Desaulniers N, et al. Taxonomy, DNA barcoding and phylogeny of three new species of Pythium from Canada. Persoonia. 2010;25:22-31. https://doi.org/10.3767/003158510X524754
  55. Matsiakh I, Oszako T, Kramarets V, et al. Phytophthora and Pythium species detected in rivers of the Polish-Ukrainian border areas. Balt For. 2016;22:230-238.

Cited by

  1. Pezizomycotina (Ascomycota) Fungi Isolated from Freshwater Environments of Korea: Cladorrhinum australe, Curvularia muehlenbeckiae, Curvularia pseudobrachyspora, and Diaporthe longicolla vol.48, pp.1, 2019, https://doi.org/10.4489/kjm.20200003
  2. Phytopythium: origin, differences and meaning in modern plant pathology vol.62, pp.3, 2019, https://doi.org/10.2478/ffp-2020-0022
  3. Phytopythium vexans Associated with Apple and Pear Decline in the Saïss Plain of Morocco vol.9, pp.9, 2021, https://doi.org/10.3390/microorganisms9091916