DOI QR코드

DOI QR Code

Strength Properties of Cement Mortar with Slurry-Typed Cellulous Fiber

슬러리형 셀룰로오즈 파이버를 혼입한 시멘트 모르타르의 강도 특성

  • Ryu, Hwa-Sung (Hanyang Experiment and Consulting, Hanyang University ERICA) ;
  • Shin, Sang-Heon (Hanyang Experiment and Consulting, Hanyang University ERICA) ;
  • Kwon, Seung-Jun (Department of Civil and Environmental Engineering, Hannam University)
  • Received : 2019.06.11
  • Accepted : 2019.07.02
  • Published : 2019.09.30

Abstract

Concrete members with wide surface area are vulnerable to cracking due to material behavior such as hydration heat and drying shrinkage. Recently many researches have been performed on improvement of strength and cracking resistance through fiber reinforcement, which are mainly focused on enhancement of tensile strength against cracking due to material behavior. In this paper, CFs(Cellulous Fibers) are manufactured for slurry type, and the engineering properties in cement mortar incorporated with CFs are evaluated for flow-ability, compressive, and flexural strength. Through SEM analysis, a pull-off characteristics of CF in matrix are analyzed. With CF addition of $0.5kg/m^3{\sim}1.0kg/m^3$, flexural strength is much improved and enough toughness of pull-off is also observed unlike plastic fiber containing smooth surface.

비표면적이 큰 콘크리트 구조체의 균열의 경우 재료적인 거동(수화열 및 건조수축)으로 균열이 발생하기 쉽다. 최근 들어 섬유를 혼입함으로서 콘크리트의 강도 및 균열 저항성 개선에 대한 많은 연구가 진행 중인데 주로 압축강도 개선보다는 인장강도 개선을 통하여 재료적 균열에 대한 저항을 높이는 연구에 집중되고 있다. 본 연구에서는 셀룰로오즈 섬유를 슬러리형으로 제조하여 이를 혼입한 시멘트 모르타르의 작업성, 압축강도 및 휨강도를 평가하였으며, SEM 측정을 통하여 섬유재의 뽑힘특성을 평가하였다. CF 혼입률을 $0.5kg/m^3{\sim}1.0kg/m^3$으로 혼입할 경우, 휨강도를 크게 향상 시킬 수 있으며, 일반 플라스틱 섬유재와 달리 뽑힘 시 충분한 조도를 가지고 있음이 관측되었다.

Keywords

References

  1. ACI 207.2R-95. (2002). Effect of Restraint, Volume Change, Reinforcement on Cracking of Massive Concrete, ACI Committee 207, USA.
  2. ACI 544.4R-88. (1999). Design Consideration for Steel Fiber Reinforced Concrete, ACI Committee 544, USA.
  3. Cho, C.G., Han, S.J., Kwon, M.H., Lim, C.K. (2012). Seismic performance evaluation of reinforced concrete columns by applying steel fiber-reinforced mortar at plastic hinge region, Journal of the Korea Concrete Institute, 24(3), 241-248. https://doi.org/10.4334/JKCI.2012.24.3.241
  4. Jansen, D., Neubauer, J., Goetz-Neunhoeffer, F., Haerzschel, R., Hergeth, W.D. (2012). Change in reaction kinetics of a portland cement caused by a superplasticizer-calculation of heat flow curves from XRD data, Cement and Concrete Research, 42(2), 327-332. https://doi.org/10.1016/j.cemconres.2011.10.005
  5. Karahan, O., Atis, C.D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete, Materials & Design, 32(2), 1044-1049. https://doi.org/10.1016/j.matdes.2010.07.011
  6. Kim, D.S., Khil, B.S., Goo, S.H., Moon, G.H., Kim, J.W., Park, J.S. (2010). Application technology of special concrete realized resistance for crack and watertightness simultaneously, Journal of the Korea Concrete Institute, 22(1), 52-58.
  7. Kwon, S.J., Jo, H.J., Park, S.S. (2014). Applicability evaluation and development of high strength spacer with plastic fiber and slag cement, Journal of the Korea Institute for Structural Maintenance Inspection, 18(4), 92-98. https://doi.org/10.11112/jksmi.2014.18.4.092
  8. Meddah, M.S., Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials, Construction and Building Materials, 23(10), 3196-3205. https://doi.org/10.1016/j.conbuildmat.2009.06.017
  9. Mohamed, M.A.S., Ghorbel, E., Wardeh, G. (2010). Valorization of micro-cellulose fibers in self-compacting concrete, Construction and Building Materials, 24(12), 2473-2480. https://doi.org/10.1016/j.conbuildmat.2010.06.009
  10. Naaman, A.E., Wongtanakitcharoen, T., Hauser, G. (2005). Influence of different fibers on plastic shrinkage cracking of concrete, ACI Materials Journal, 102(1), 49-58.
  11. Neithalath, N., Weiss, J., Olek, J. (2004). Acoustic performance and damping behavior of cellulose-cement composites, Cement and Concrete Composites, 26(4), 359-370. https://doi.org/10.1016/S0958-9465(03)00020-9
  12. Pichor, W., Petri, M., Deja, J. (2000). Properties of FRC with Modified Cellulose Fibers, Fifth International RILEM Symposium on Fibre-Reinforced Concrete(FRC), RILEM Publications SARL, 643-652.
  13. Rasoulia, H.R., Golestani-Fard, F., Mirhabibia, A.R., Nasab, G.M., Mackenzie, K.J.D., Shahraki, M.H. (2015). Fabrication and properties of micro porous metakaolin-based geopolymer bodies with poly lactic acid(PLA) fibers as pore generators, Ceramics International, 41(6), 7872-7880. https://doi.org/10.1016/j.ceramint.2015.02.125
  14. Song, H.W., Cho, H.J., Park, S.S., Byun, K.J., Maekawa, K. (2001). Early-age cracking resistance evaluation of concrete structure, Concrete Science and Engineering, 3(10), 62-72.
  15. Soroushian, P. (1996). "Cellulose fibers reinforced concrete," Proceedings of the Materials Engineering Conference, 4(1), 809-818.
  16. Soroushian, P., Marikunte, S. (1994). Durability characteristics of cellulose fiber reinforced cement composites, Special Publication, 142, 73-90.
  17. Soroushian, P., Ravanbakhsh, S., (1998). Control of plastic shrinkage cracking with specialty cellulose fibers, ACI Material Journal, 95(4), 429-435.
  18. Ulm, F.J., Bazant, Z.P., Wittman, F.H. (2001). Creep, Shrinkage, and Durability Mechanics of Concrete and other Quasi-Brittle Materials, Elsevier Science Ltd, Cambridge, England, 735-740.
  19. Uno, P.J. (1998). Plastic shrinkage cracking and evaporation formulas, ACI Materials Journal, 95, 365-375.
  20. Vares, S., Sarvaranta, L., Lanu, M. (1997). Cellulose Fiber Concrete, VTT Publications.
  21. Vinson, K,D., Daniel, J.L. (1990). Specialty cellulose fibers for cement reinforcement, Special Publication, 124, 1-18.
  22. Xiao, L., Li, Z. (2008). Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement, Cement and Concrete Research, 38(3), 312-319. https://doi.org/10.1016/j.cemconres.2007.09.027
  23. Yoo, S.W., Kwon, S.J., Jung, S.H. (2012). Analysis technique for autogenous shrinkage in high performance concrete with mineral and chemical admixtures, Construction and Building Materials, 34, 1-10. https://doi.org/10.1016/j.conbuildmat.2012.02.005